

Engineering Assessment Report

Proposed Residential Development at Rathmullan, Drogheda, Co. Meath

September 2019

Waterman Moylan Consulting Engineers Limited

Block S, East Point Business Park, Alfie Byrne Road, Dublin D03 H3F4 www.waterman-moylan.ie

Client Name: Trailford Ltd.

Document Reference: 18-014.r001 (Issue 4)

Project Number: 18-014

Quality Assurance – Approval Status

This document has been prepared and checked in accordance with Waterman Group's IMS (BS EN ISO 9001: 2015 and BS EN ISO 14001: 2015)

Issue No. 1	Date Dec. 18	Prepared by B. Warren	Checked by J. Gibbons	Approved by J. Gibbons
No. 2	Aug. 19	B. Warren	J. Gibbons	J. Gibbons
No. 3	Aug. 19	B. Warren	J. Gibbons	J. Gibbons
No 4	Sept 19	B Warren	J Gibbons	J Gibbons

Comments

Disclaimer

This report has been prepared by Waterman Moylan, with all reasonable skill, care and diligence within the terms of the Contract with the Client, incorporation of our General Terms and Condition of Business and taking account of the resources devoted to us by agreement with the Client.

We disclaim any responsibility to the Client and others in respect of any matters outside the scope of the

This report is confidential to the Client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk.

Content

1.	Introd	uction	3
	1.1	Site Location and Description	3
	1.2	Description of the Proposed Development	3
	1.3	Background of Report and Summary	4
2.	Foul V	Vater Drainage	6
	2.1	Introduction	6
	2.2	Irish Water Pre-Connection Enquiry	6
	2.3	Irish Water Design Acceptance	6
	2.4	Foul Water – General	7
	2.5	Foul Water Calculations	7
	2.6	Foul Water Pumping Station and Preliminary Specification	8
	2.6.1	General	8
	2.6.2	Pumping Chamber Design Criteria	8
	2.6.3	Pump Design	9
	2.6.4	Pump Start / Stop Cycle	9
	2.6.5	Emergency Storage	9
	2.6.6	Pumping Station Equipment to be provided	9
	2.6.7	Emergency Equipment and Procedures	10
3.	Surfac	ce Water Drainage	11
	3.1	Introduction	11
	3.2	Surface Water – General	11
	3.3	Surface Water - Calculations	12
	3.3.1	Site Characteristics	12
	3.3.2	Soil Type	12
	3.3.3	Outflow Limits	13
	3.3.4	Site Infiltration and Groundwater	13
	3.3.5	Calculations – Sewer Network	14
	3.3.6	Calculations – Storage	14
	3.4	SuDS Selection Criteria	17
	3.5	Flood Risk Assessment	19
4.	Water	Supply	20
	4.1	Introduction	20
	4.2	Irish Water Pre Connection Enquiry	20
	4.3	Water Demand Calculation	20
	4.4	Water Supply – General	20

4	4.5	Water Conservation	21
5.	Transp	oort	22
!	5.1	Description of the Proposed Development	22
ļ	5.2	Traffic and Transport Assessment	23
Į.	5.3	Existing Road Network	23
!	5.4	Proposed Road Network	24
!	5.4.1	Site Access	24
!	5.4.2	Internal Network	24
	5.4.3	Proposed Upgrades	24
!	5.5	Parking Provision	25
ļ	5.6	Sustainable Access	26
!	5.6.1	Walking	26
!	5.6.2	Cycling	26
;	5.6.3	Public Transport	26
Appe	endices	S	28
	A.	Irish Water Pre-Connection Enquiry Feedback	
ı	B.	Irish Water Letter of Design Acceptance	
(C.	Foul Water Calculations	
ı	D.	Site Investigation	
ı	E.	Surface Water Pipe Network Calculations	
I	F.	Surface Water Attenuation Calculations	
(G.	Typical Stormtech MC-4500 Construction Details	
ı	H.	Louth County Council Consent Letter: proposed junction upgrades	

1. Introduction

This report has been prepared by Waterman Moylan Consulting Engineers, on behalf of Trailford Ltd., for a residential development at Rathmullan, Drogheda, Co. Meath.

1.1 Site Location and Description

The site is located on Rathmullan Road in Drogheda, Co. Meath. The site is situated approximately 2.5 km west of Drogheda town centre as indicated in Figure 1 below.

The subject site is bounded to the north by the River Boyne, to the east by existing residential and agricultural areas, to the south by agricultural lands, and to the west by the M1 Dublin to Belfast Motorway.

The site area is c 26.21 hectares and is currently used for agricultural purposes. The lands generally slope from south-west to north-east towards the River Boyne with existing ground levels of between 38.0 m and 3.5 m OD Malin. The site is currently accessed via an existing entrance off Rathmullan Road.

Please refer to Waterman Moylan drawing No. 18-014-P001 for the exact site location and surrounding lands as outlined above.

Figure 1: Site Location

1.2 Description of the Proposed Development

The proposed development consists of a Strategic Housing Development on residential zoned lands west of Drogheda town centre. The accommodation provided on the site consists of;

661 residential units with a crèche and retail unit,

This application includes all associated infrastructure necessary to service the above. This includes a network of foul water and storm water pipes, watermains, and a network of roads and footpaths.

The total surfaced area of the proposed development, including roads, roofs, and other paved areas is approximately 10.39 Ha.

The proposed estate road levels around the site range from 18.73 to 36.50 m OD Malin and proposed finished floor levels range between 19.25 to 36.50 m OD Malin.

The main access for the site will be provided via a new 4 arm signalised junction with arms linking the Rathmullan Road (East), the Rathmullan Road (West) the proposed site access and the local access road to the south of the signalised junction. A second access into the housing development is proposed via a new priority junction to the south of the site onto the existing local access road.

The design and layout of the proposal has been prepared to fully comply with the current relevant design standards and specifications applicable to this form of development.

1.3 Background of Report and Summary

This report describes the criteria used to design and detail the options available for the disposal of foul water, disposal of storm water (subject to a restriction to the discharge rate), water supply and roads network to serve the development site.

It is proposed that the foul sewerage from the site will drain via a new network of gravity sewers to a new pumping station located at the low point in the north-eastern corner of the subject site. Further to a preconnection enquiry, Irish Water have advised that this will be a 'Strategic Pumping Station' designed to accommodate the 'Riverbank' housing estate currently served by the adjacent existing pumping station (to be decommissioned) and future residential units which have been granted planning under Reg. Ref. LB170675.

Foul water will be pumped from the new pumping station and connect to the existing 110 mm diameter rising main on Rathmullan Road to the east of the subject site. This will require c. 300 m of new 110 mm rising main below the internal estate roads and a section of Rathmullan Road. Ultimately this foul water discharges to into the existing gravity sewer network on Marley's Lane c 900 m east of the subject site. Foul drainage eventually outfalls to the Drogheda Wastewater Treatment Plant. All foul water drainage details shall be in accordance with Irish Water requirements.

The quantity of storm water discharged from the proposed development to the stream will be restricted to Qbar runoff rate of 3.17 l/s/Ha based on the Institute of Hydrology report No. 124 "Flood Estimation for Small Catchments", as required by Meath County Council. This flow restriction is achieved by means of a Hydro-brake, or similar approved, installed at the outfall manhole of each surface water catchment within the development, with the excess storm water stored on site for the duration of the storm. The proposed attenuation systems will facilitate infiltration to ground. Sustainable urban drainage systems have been implemented within the proposed development to ensure that the runoff quality and rate are managed in accordance with the recommendations of the Greater Dublin Strategic Drainage Scheme, GDSDS.

It is proposed that the surface water from the proposed development will drain via gravity and discharge at a restricted rate to the existing 1200mm culvert adjacent Rathmullan Road at the north-east of the site. This culvert merges into a ditch c. 60 m to the north of the proposed outfall location. The ditch travels for c. 120 m northwards before outfalling into the River Boyne which is tidal at this location.

Water supply to the subject site will be provided via a new proposed connection to the existing 150mm HPPE watermain on Rathmullan Road to the east of the site. Irish Water have advised that this connection is feasible and that c. 140 m of 150mm ID network extension is required along with a new meter and

pressure reducing valve at the connection point. All water supply details shall be in accordance with Irish Water requirements.

Access to the subject site will be provided on Rathmullan Road to the east of the subject site by means of a proposed 4 arm signalised junction, and a secondary access on the unnamed local road to the south of the site by means of a proposed priority junction. Upgrade works are proposed to the unnamed local road to the south of the signalised junction and to Rathmullan Road to the north of the signalised junction. Pedestrian access links from the proposed development and the existing footpath on Rathmullan Road will also be provided via a new footpath which facilitates access to the River Boyne walkway.

2. Foul Water Drainage

2.1 Introduction

It is proposed that the foul sewerage from the site will drain via a new network of gravity sewers to a new pumping station located at the low point in the north-eastern corner of the subject site. Further to a preconnection enquiry, Irish Water have advised that this pumping station will be designed to accommodate the 'Riverbank' housing estate currently served by the adjacent existing pumping station. Furthermore, a new residential development has been granted planning under Reg. Ref. LB170675 which requires the construction of a foul water pumping station to serve that development. It is proposed that the new pumping station on the subject site will be a strategic pumping station which will take the waste water from 'Riverbank' housing estate and from this proposed new residential development. This will eliminate the need for separate individual pumping stations.

Foul water will be pumped from the new pumping station and connect to the existing 110 mm diameter rising main on Rathmullan Road to the east of the subject site. This will require c. 300 m of new 110 mm rising main below the internal estate roads and a section of Rathmullan Road. Ultimately this foul water discharges to into the existing gravity sewer network on Marley's Lane c. 900 m east of the subject site. Foul drainage eventually outfalls to the Drogheda Wastewater Treatment Plant. All foul water drainage details shall be in accordance with Irish Water requirements.

Waterman Moylan drawing No's 18-014-P020 to P024 show the proposed foul water sewer network for the subject site.

2.2 Irish Water Pre-Connection Enquiry

A pre-connection enquiry was submitted to Irish Water in respect of the foul connection from the proposed development. Subsequently, Irish Water have confirmed that based on the size of the proposed development and on the capacity currently available, that subject to a valid connection agreement being put in place, the proposed connection to the Irish Water network can be facilitated.

Further to the above, Irish Water advised that a new pumping station is required to cater for the development. The new pumping station is to be sized to replace the adjacent existing old pumping station and further catchment areas. Rathmullan (LNRP) Local Network Reinforcement Project proposal are to be implemented under Irish Water growth (IW CIP funded).

The Irish Water Pre-Connection Enquiry Form Response Letter (Ref. No. 7663617994) is attached in Appendix A of this report.

2.3 Irish Water Design Acceptance

The foul drainage design for the proposed development was submitted to Irish Water. Subsequently, Irish Water issued a letter of design acceptance stating that there are no objections to the proposals. A copy of the letter has been included in Appendix B.

2.4 Foul Water - General

Foul water sewers within the proposed development will be laid to comply with the requirements of the Building Regulations, and in accordance with the recommendations contained in the Technical Guidance Documents, Section H.

Foul water sewers which will be taken into charge will be laid strictly in accordance with Irish Water's requirements for taking in charge.

In accordance with the Irish Water "Code of Practice for Wastewater Supply", 150mm nominal internal diameter sewers have been proposed for carrying wastewater from 20 properties or less; whilst 225mm nominal internal diameter carrying Wastewater from more than 20 properties. Furthermore, where there are at least ten dwelling units connected, the 150mm diameter pipes are laid at a minimum gradient of 1:60 for up to nine connected dwelling units.

The pumping station has been located with a 20m separation distance from the nearest dwelling. This complies with Section 5.5 of the Irish Water "Code of Practice for Wastewater Supply", which states that a Type 3 pumping stations require a minimum buffer zone of 15m.

2.5 Foul Water Calculations

The foul water drainage for the proposed development has been designed so that minimum cleansing velocities outlined in the "Irish Water Code of Practice for Wastewater Infrastructure" are achieved for all foul sewers. The peak foul flow is based on Irish Water recommended peak demand/flow factors which are provided in the Irish Water 'Code of Practice for Wastewater Infrastructure', Appendix D - Wastewater Flow Rates for Design. Pipe capacities and velocities have been calculated using Colebrook-White formula with a roughness coefficient (Ks) of 1.5mm.

The estimated foul flows generated from the proposed development and existing / approved developments which the new strategic pumping station will ultimately serve are as follows:

Table 1: Calculation of proposed Foul Water Flow

Description	No. of Units	Population per unit	PE	Flow l/hd/day	Infiltration Factor	Total Discharge (I/d)
Proposed Development						
Residential Units	661 Units	2.7	1,784.7	150	1.1	294,475.5
Crèche	1		55	50	1.1	3,025
Retail	1		10	30	1.1	330
					Sub - Total	297,830
Riverbank (Existing)						
Residential Units	200 Units	2.7	540	150	1.1	89,100

Residential	156 Units	2.7	421.2	150	1.1	69,498
					Total	464,528
Calculation of Propo	osed Peak Foul Flo	<u>ow</u>				
		<u>DW</u>	456	,428 I /d		
Calculation of Propo Total Daily Discharg Dry Weather Flow (I	ge (from Table 1.)	<u>ow</u>		,428 I/d 5.28 I/s		

The associated calculations for all foul pipes required to serve the proposed development, which have been prepared using MICRODRAINAGE, are included in Appendix C of this report.

2.6 Foul Water Pumping Station and Preliminary Specification

2.6.1 General

As set out in 2.1 above, it is proposed to construct a new pumping station at the north-eastern side of the site. The pumping station will be sized to accommodate the proposed development as per the calculations below. However, it is noted that Irish Water have advised that this pumping station will also be required to accommodate the existing residential units currently served via the adjacent existing pumping station which is to be decommissioned, and future residential site (156 No units & crèche) which have been granted planning under Reg. Ref. LB170675. The detailed design for the upgrade of this pumping station will be subject to future discussions and correspondence with Irish Water.

2.6.2 Pumping Chamber Design Criteria

The capacity of the pumping chamber has been based on the following design criteria:

Table 2: Pumping Station Design Criteria

Static Head	26.25	m
Rising Main	110	mm Ø
Length of Rising Main	1200	m
Dry Weather Flow	5.28	l/sec

Based on the above, the volume of the foul rising main is 9.42 m³. At 5.28 l/s dry weather flow, this represents a retention time in the rising main of 0.5 hours. Therefore, there will be no septicity in the rising main.

2.6.3 Pump Design

Rising main: Material uPVC (Ks = 1.0)

Length 1200 m

Proposed pump: Motor Power 9 kW / 1425 rpm

Pump proposed by EPS Ireland

2.6.4 Pump Start / Stop Cycle

Minimum capacity between cut-in and cut-out:-

For 10 starts pe	r 10 starts per hour		P/4V =	10	
P = 1.1 x Peak	$Flow = 1.1 \times 5.28$	8 (DWF) x 4.5 (Peakin	g Factor)		
P =	26.136	l/s	=	94.09	m³/hr
V=	94.09 / 40		=	2.35	m³
Sump	1.8m diamete	1.8m diameter RC ring		2.54	m³
Sump depth	Required =	2.35 / 2.54	=	0.93	m
	Provided =			1.0	m

2.6.5 Emergency Storage

An emergency overflow to the surface water sewer system has been provided. The total volume of storage available in the pump sump to this level is c. 9.0 m³ with a further 450 m³ available in the adjacent storage tanks.

In addition there is storage available in the foul water manholes and sewers.

At 5.28 l/sec (1*DWF) the total volume required to be stored in a 24 hour period is 456 m³, which is less than the emergency storage available.

2.6.6 Pumping Station Equipment to be provided

Mechanical and electrical equipment for the proposed pumping chamber is to be provided by an approved specialist contractor to include features as detailed on the pumping chamber drawings and to meet with Irish Water requirements.

The following is a checklist of the equipment proposed (or similar approved).

Pump Sets

2 No. submersible pumps, 1 duty 1 standby. The pumps are to be fitted with impellers capable of pumping 100-mm diameter solids. The pump motor is to be suitable for 400V/3ph/50Hz electricity power supply. The unit is fitted with over temperature protection, as well as mechanical seal monitoring.

The pumps shall be supplied complete with quick couple release mechanisms for removal and reinstallation of the pumps, 50mm diameter twin galvanised guide rails, holding brackets lifting chains etc.

Pipework & Valves

Pump pipework is to be 110 mm ductile iron, complete with couplings, riser pipes, bends and tee pieces, tapers etc as required, all complete with flange sets, consisting of zinc plated nuts, bolts, washers and gaskets.

100mm-diameter cast iron non-return valves and gate valves complete with handwheels for clockwise closing as required.

Electrical Equipment

- Pump power cables complete with cable glands.
- Earth spike and bonding.
- ESB distribution board in kiosk.

Control Equipment Panel

Ultrasonic level controller, complete with 5 programmable output relays for automatic stop and start of pumps.

Ultrasonic transducer head complete with 10m of signal cable and mounting brackets.

Control panel containing the following: -

- Cyclic relay for alternating duty pump
- Ammeters
- Hour run meters
- Hand, off, Auto switches.
- Run/trip/alarm lights
- DI relays for seal monitoring
- High level alarm beacon

Control Kiosk

A control kiosk shall be provided adjacent to the pumping station.

2.6.7 Emergency Equipment and Procedures

The pumping station is being provided with the following emergency equipment and procedures: -

- Standby pump in the event of a pump failure
- Telemetry system to facilitate Irish Water monitoring of the station
- High level alarms to warn of increases in level of effluent in the pump sump
- Storage capacity within the sump and pipe network in excess of 24 hours
- Over-pumping facilities on the rising main to facilitate the installation of a temporary external pump to empty the sump directly into the rising main

The above emergency equipment and procedures provide a very high level of redundancy and backup in the event of a failure in the mechanical systems in the pumping station.

3. Surface Water Drainage

3.1 Introduction

It is proposed that the surface water from the proposed development shall drain via gravity and discharge at a restricted rate into the existing 1200mm culvert adjacent to Rathmullan Road at the north-east of the site. This culvert merges into a ditch on the opposite side of the existing road 60 m to the north of the proposed outfall location. The ditch travels for c. 120 m northwards before outfalling into the River Boyne which is tidal at this location.

The surface water network for the subject site has been divided into four separate catchments, referred to in this report and associated drawings as Catchment A, Catchment B, Catchment C and Catchment D. These catchments operate in series with runoff from each flowing into the downstream catchment area at a restricted rate.

Runoff will be restricted to the equivalent of the Qbar runoff rate of 3.17 l/s/Ha. Surface water runoff shall be restricted via a hydrobrake installed at the outfall manhole of each surface water catchment with excess storm water attenuated in separate underground Stormtech, or similar approved, storage systems located beneath the open space areas. The Stormtech systems will facilitate infiltration and have been sized on this basis.

Sustainable urban drainage systems have been implemented within the proposed development to ensure that the runoff quality and rate are managed in accordance with the recommendations of the Greater Dublin Strategic Drainage Scheme, GDSDS. The Suds strategy for the proposed development is set out in Section 3.4 below.

The layout of the proposed surface water drainage network is shown on Waterman Moylan Drawing No's 18-014-P020 to P024.

An overview of the four surface water catchments are shown on Waterman Moylan drawing No. 18-014-P029.

3.2 Surface Water – General

Sustainable Urban Drainage systems (SUDS) have been developed and are in use to alleviate the detrimental effects of traditional urban storm water drainage practice that typically consisted of piping runoff of rainfall from developments to the nearest receiving watercourse. Surface water drainage methods that take account of quantity, quality and amenity issues are collectively referred to as sustainable urban drainage systems; they are typically made up of one or more structures built to manage surface water runoff.

The proposed surface water drainage system for this development has been designed as a sustainable urban drainage system and uses, water butts, permeable pavement, grass swales, attenuation storage together with flow control device and petrol interceptor to:

- Treat runoff and remove pollutants to improve quality
- Restrict outflow and to control quantity
- Increase amenity value

Strict separation of surface water and wastewater will be implemented within the development. Drains will be laid out to minimise the risk of inadvertent connection of waste pipes etc. to the surface water system.

Surface water local drains will be 150 mm to 225 mm and generally will consist of PVC (to IS 123) or concrete socket and spigot pipes (to IS 6). These drains will be laid to comply with the Requirement of the Building Regulations 2010, and in accordance with the recommendations contained in the Technical Guidance Documents, Section H.

Surface water public sewers will be 225 mm to 750 mm and generally will consist of PVC or concrete socket and spigot pipes (to IS 6) and laid strictly in accordance with the requirements of Meath County Council.

3.3 Surface Water - Calculations

3.3.1 Site Characteristics

The following site characteristics are contained in the Storage Attenuation calculations included in Appendix E, and are reiterated in the following sections.

As outlined above, the site has been divided into 4 No. catchments for surface water drainage. It is also noted that there is a large open space area at the north of the development which is not drained into the new surface water network and is therefore not included in the surface water calculations.

Table 3: Surface Water Catchment Details

	Total Area (ha)	Impermeable Area (ha)	% Hardstanding
Catchment A	8.12	3.432	42.3
Catchment B	4.02	1.916	47.7
Catchment C	8.14	3.723	45.7
Catchment D	2.92	1.317	45.1
Open Space	3.01	0	-
Total	26.21	10.39	39.6

In addition to the areas in the table above, the following site characteristic data was also used:

SAAR – mm 762*
 Soil Type 3**
 SOIL Index 0.37***
 Climate Change 1.2

3.3.2 Soil Type

The subject site is located on the boundary between Soil Type 1 and 2 on the 1978 Soil Map of Ireland. However, given the steep topography of the site and the moderate percolation qualities of the site soils, it was concluded that the map was not an accurate reflection of the soils on the subject site. Data from the Site Investigation was examined against the criteria outlined in the GDSDS in order to ascertain a more accurate soil type and runoff factor.

^{*}Met Eireann 1981-2010 Annual Average Rainfall Grid

^{**}Obtained via Site Investigation, please see section 3.3.2 below

^{***}GDSDS Vol2

To accurately determine the soil type for the purpose of assessing the greenfield site rate of runoff, a Site Investigation was commissioned. A copy of the Site Investigation Report is included in Appendix D.

The site investigation reports that on-site soil conditions can generally be classified as per the following:

- Geotechnical Boring Records show that soils are generally classified as silty clays with some gravel and cobbles present.
- The percolation is relatively low (average of 0.03 m/s).
- The slope of the land is generally c. 3-5%.

These soils characteristics are representative of either a Soil Type 3 or 4 as set out in Appendix D-1 of the Greater Dublin Regional Drainage Study, and further detailed in the Flood Studies Report (FSR) statistical and rainfall runoff – various methods (National Environment Research Council, 1975). To ensure a conservative approach with regards to surface water management, Soil Type 3 has been adopted. Soil Type 3 is described as having a moderate winter rain acceptance parameter (i.e. moderate infiltration potential), with moderate runoff and is typical of intermediate silty soils.

3.3.3 Outflow Limits

The outflow limits are calculated in accordance with the Institute of Hydrology report No 124 "Flood Estimation for Small Catchments" for sites less than 50 Ha, where:

Qbar = 0.00108(Area) $0.89 \times (SAAR)^{1.17} \times (SOIL)^{2.17}$

Greenfield Run-off = Qbar x ("n-year" factor)

Allowable Discharge = Greenfield Run-off x Area

Where:

- Area = Site area in km2 (Or 50 hectares if site is less than 50 Hectares)
- SAAR = Standard Annual Average Rainfall, taken from Met Eireann 1981-2010 Annual Average Rainfall Grid
- SOIL = Runoff constant (Varies between 0.1 and 0.53: Given as 0.37 for a Type 3 soil)
 - \Rightarrow Qbar_{rural} = 0.00108(0.5)^{0.89} x (762)^{1.17} x (0.37)^{2.17}
 - ⇒ Qbar_{rural} = 158.6 l/s (For a 50 hectare site)
 - ⇒ Qbar_{rural} = 3.17 l/s/Ha

Therefore, the permitted outflow for varying return periods has been calculated as follows:

Table 4: Surface Water Outflow

	Catchment A	Catchment B	Catchment C	Catchment D	Total
Catchment Area - Ha	8.12	4.02	8.14	2.92	23.2
Qbar _{rural} – I/s	25.74	12.74	25.80	9.26	73.54

3.3.4 Site Infiltration and Groundwater

The attenuation systems have been designed with a permeable membrane to facilitate percolation into the ground. Percolation tests were carried out as part of the site investigation works in order to determine the infiltration rate at the areas where attenuation systems are proposed. The infiltration (f) values of the soils

at the location of the proposed attenuation systems are shown in Table 5. A full copy of the percolation test results are provided in Appendix D.

Table 5: Infiltration (f) values

Location Ref. (SI Report)	Surface Water Catchment	F value (m/min)	F value (m/s)
SA 05	Catchment A	0.00051	0.0306
SA 03	Catchment B	0.00029	0.0174
SA 03	Catchment C	0.00029	0.0174
SA 02	Catchment D	0.00068	0.0408

No groundwater strikes were noted during the Site Investigation works which included trial pits and boreholes to depths of up to 8m BGL. These works were carried out in November 2018 when it would be expected that ground water is relatively high due to the predominance of winter rainfall in Ireland.

Given the low water table and moderate percolation qualities of the soils, the water table is not expected to be an issue when constructing the drainage infrastructure.

3.3.5 Calculations – Sewer Network

Calculations for pipe sizes and gradients are based on storm water runoff from the roofs and surfaced areas using the Rational Method for surface water design (Bilhams Formula), with a storm return period (N) of 5 years.

Pipe capacities and velocities have been calculated using Colebrook-White formula with a roughness coefficient (Ks) of 0.6mm.

The total impermeable area includes roads, car-parking and roofs. The total impermeable area of each catchment is provided in Table 4 above.

These areas were used in the MICRO DRAINAGE calculations for the design of the surface water networks which are included in Appendix E. A 20% climate change factor has been factored into the design of the surface water pipe network.

The outfall sewer for the proposed development is a 300 mm pipe laid at c. 1:20 which provides a capacity of c. 250 l/s. The restricted outflow from the subject site (Catchment A, B, C & D combined) is 73.5 l/s. Therefore, there is adequate spare capacity in the outfall sewer to cater for the proposed development design flows.

3.3.6 Calculations – Storage

It is proposed to store excess storm water up to the 1 in 100-year storm event within 4 No. underground storage systems, one per surface water catchment. The attenuation storage will normally be dry and will only fill up during storm events. The stormwater will then be released after the storm, at a controlled rate via the hydrobrake manholes.

Stormwater within the attenuation systems will also infiltrate into the ground. In accordance with the BRE Digest 365 guidance document the infiltration calculations assume infiltration from the sides of the systems only. The infiltration rates for the attenuation systems are set out in Table 5.

As discussed above, the surface water network for the subject site has been divided into four separate catchments. These catchments operate in series with runoff from each flowing into the downstream catchment area at a restricted rate. A diagram of the catchments is illustrated in Figure 2 overleaf.

Figure 2: Catchment Arrangement

The impermeable area for each surface water drainage network, as set out in Section 3.3.1 above, was used in the MICRO DRAINAGE calculations for the design of the surface water attenuation. A 20% climate change factor has been included for in the design of the attenuation storage tanks.

The storage design calculations outlined for each catchment below are included in Appendix F of this report.

Typical construction details of the proposed Stormtech MC-4500 attenuation systems are provided in Appendix G.

General details including capacity, cover level, invert level, area, length, width and depth of the underground attenuation systems for each catchment are shown on the drainage drawings.

Catchment A

Catchment A is located at the top of the catchment in the south of the site and covers an area of c. 8.12 ha. The total impermeable area is approximately 3.432 ha. The attenuation storage for this catchment is sized to accommodate the Qbar runoff rate of 25.74 l/s. Runoff will be restricted via the hydrobrake manhole with excess runoff stored in an underground Stormtech MC-4500 storage system located beneath the open space area. Water stored within the system will percolate to ground at an infiltration rate of 0.0306 m/s and this has been allowed for in the storage requirement calculations. This catchment outfalls into Catchment B at 25.74 l/s via a 300 mm diameter pipe laid at 1:200 which provides a capacity of c. 78 l/s.

Storage requirement's calculations indicate that for a return period of 100 years the 480-minute winter storm is the critical storm which requires a storage volume of approximately 1,479.8 m³. The capacity of the underground storage system proposed to attenuate excess runoff from Catchment A, is approximately 1,482 m³.

Catchment B

Catchment B is generally located on the eastern side of the site and covers an area of c. 4.02 ha. The total impermeable area is approximately 1.916 ha. The attenuation storage for this catchment is sized to accommodate the Qbar runoff rate of 12.74 l/s. Runoff will be restricted via the hydrobrake manhole with excess runoff stored in an underground Stormtech MC-4500 storage system located beneath the open space area. Water stored within the system will percolate to ground at an infiltration rate of 0.0174 m/s and this has been allowed for in the storage requirement calculations. This catchment outfalls into Catchment C at 38.48 l/s (sum of Catchment A and Catchment B) via a 300 mm diameter pipe laid at 1:200 which provides a capacity of c. 78 l/s

Storage requirement's calculations indicate that for a return period of 100 years the 480-minute winter storm is the critical storm which requires a storage volume of approximately 830 m³. The capacity of the underground storage system proposed to attenuate excess runoff from Catchment B, is approximately 861 m³.

Catchment C

Catchment C is generally located on the west and north-west portions of the site and covers an area of c. 8.14 ha. The total impermeable area is approximately 3.723 ha. The attenuation storage for this catchment is sized to accommodate the Qbar runoff rate of 25.80 l/s. Runoff will be restricted via the hydrobrake manhole with excess runoff stored in an underground Stormtech MC-4500 storage system located beneath the open space area. Water stored within the system will percolate to ground at an infiltration rate of 0.0174 m/s and this has been allowed for in the storage requirement calculations. This catchment outfalls into Catchment D at 25.80 l/s via a 300 mm diameter pipe laid at 1:200 which provides a capacity of c. 78 l/s

Storage requirement's calculations indicate that for a return period of 100 years the 480-minute winter storm is the critical storm which requires a storage volume of approximately 1,583.5 m³. The capacity of the underground storage system proposed to attenuate excess runoff from Catchment C, is approximately 1,621 m³.

Catchment D

Catchment D is generally located on the north eastern corner of the site and covers an area of c. 2.92 ha. The total impermeable area is approximately 1.317 ha. The attenuation storage for this catchment is sized to accommodate the Qbar runoff rate of 9.26 l/s. Runoff will be restricted via the hydrobrake manhole with excess runoff stored in an underground Stormtech MC-4500 storage tank located beneath the open space

area. Water stored within the system will percolate to ground at an infiltration rate of 0.0408 m/s and this has been allowed for in the storage requirement calculations. This catchment outfalls to the existing 1200 mm culvert on Rathmullan Road c. 30m from the last attenuation area at a rate of 73.54 l/s (sum of all Catchments).

Storage requirement's calculations indicate that for a return period of 100 years the 480-minute winter storm is the critical storm which requires a storage volume of approximately 556.7 m³. The capacity of the underground storage tank proposed to attenuate excess runoff from Catchment D, is approximately 557 m³.

Summary

The total capacity of the attenuation storage is 4,521 m³. This is sufficient storage capacity to store water from the critical 100-year storm for the subject site with 20% climate change allowed for in the calculations to facilitate climate change.

3.4 SuDS Selection Criteria

The SUDS selection process used for this site is in accordance with SUDS selection flow chart, Volume 3, Section 6.5, Figure 48 of the GDSDS. The characteristics of the site are utilised to select the various SUDS techniques that would be applicable.

The applicant has considered the use of all appropriate SUDS devices as part of the site SUDS strategy.

- Water Butts utilised within each residential unit
- Permeable Pavement utilised within driveways
- Swales utilised in grass verges alongside estate roads
- Underground Attenuation –below the open space areas
- Flow control device (e.g. hydrobrake) installed at the outfall manhole of each catchment
- Petrol Interceptor installed downstream of each flow control device manhole

The effectiveness of each SUDS / drainage mechanism proposed is outlined below:

Water Butts:

It is proposed to provide water butts for the individual dwellings for external gardening and wash down use only, which will ensure interception at source.

Permeable Pavement:

Permeable pavement reduces the overall impermeable area of the hard standing area, which will reduce the impact of the discharge and improve the quality of the effluent from the proposed development. Permeable pavement will be provided in private driveway areas. Waterman Moylan drawing No. 18-014-P010 included as part of the proposed submission includes the permeable paving layout and location. The permeable paving is provided for the purposes of improving the quality of the surface water runoff. No reduction in the rate of run-off as a result of the permeable paving provision is allowed for in the surface water calculations which assumes the system is in a saturated state.

Swales:

Roadside swales have been incorporated in the grass verges where appropriate throughout the development as indicated on Waterman Moylan drawing No. 18-014-P020 to P024. Water will drain into the swales via kerb inlets which are provided at c. 20m chainages. This detail is shown on the drainage drawings. The swales incorporate an infiltration trench at the invert of the swales which will encourage surface water to drain direct to ground as recommended by SUDS. A recent Site Investigation showed that conditions on site are conductive to infiltration. Any remaining water which does not filtrate direct to ground will drain to the surface water network.

Underground Attenuation:

The proposed Stormtech attenuation system will provide treatment to the storm water before it passes to the local network. The tank has been designed to be 'on-line' which ensures that runoff will drain via the 'Isolator Row' which provides treatment even in low flow conditions. This row is surrounded with filter fabric that provides for settling and filtration of sediments as the water passes through. This ensures that the majority of the solids are removed within the isolator row which prevents silt build-up in the remainder of the chambers. This minimises maintenance requirements and maintenance costs.

The attenuation system also permits infiltration to ground via the provision of a permeable geotextile membrane. The site investigation has shown that ground conditions are conducive to infiltration and that the water table is well below ground level.

The system also attenuates surface water to restrict the outflow to the equivalent of the existing agricultural runoff. This ensures the development will not give rise to any impact downstream of the site.

Flow Control Device:

It is proposed to provide a hydrobrake, or similar approved, at the outfall of each surface water catchment to restrict the outflow of water from the subject site. As required by Meath County Council, all flow control devices will have a 300mm outlet pipe which has been sized to take the outflow rate. The hydro-brakes will be fitted with a pull cord bypass and a penstock valve installed on the inlet to the manhole for maintenance purposes. Details of the hydro-brake manhole are shown on Waterman Moylan drawing No. 18-014-P030.

Petrol Interceptor:

It is proposed to provide a petrol interceptor downstream of the Catchment D hydro-brake manhole to ensure that any remaining hydro-carbons or pollutants within the runoff from trafficked areas are treated prior to outfall to the existing 1200 mm culvert. It is proposed to provide a Klargestor Bypass Separator Type NSBP0010 or similar approved. A detail is shown on Waterman Moylan drawing No. 18-014-P030.

In conclusion the water quality from this catchment should be of a high quality due to the above mentioned measures, which are applied in a treatment train to treat the water before discharge at a restricted rate to the local network.

The above measures ensure a suitable management train is provided.

Management Train:

The management train commences with **source control** through the provision of water butts and draw off taps in each dwelling for external reuse only. This will also reduce the water consumption required of each housing unit.

The second stage of the management train, **site control**, is provided by the introduction of permeable pavement and swales, all of which provide a degree of treatment before discharging to the proposed surface water network and attenuation system. The rate of runoff is controlled through the provision of a flow control device installed in the outfall manhole of each surface water catchment.

The underground attenuation offers a third stage of treatment, **regional control**, by slowing the storm water discharge down, promoting infiltration and removing additional silts which may remain in the storm water.

3.5 Flood Risk Assessment

JBA Consulting have prepared a detailed Site-Specific Flood Risk Assessment for the proposed development. Whilst the CFRAM study indicated that the site is within Flood Zone A/B, the assessment provided by JBA notes this study used out-dated catchment conditions and does not reflect the intersection of a watercourse and the incorporation of its flows into the M1 surface water drainage network.

JBA's assessment showed that the proposed development and its associated surface water drainage network has been appropriately designed in order to mitigate flood risk.

The Site-Specific Flood Risk Assessment is included in this SHD submission under separate cover which has been prepared by JBA Consulting.

4. Water Supply

4.1 Introduction

Water supply to the subject site will be provided via a new proposed connection to the existing 150mm HPPE watermain on Rathmullan Road to the east of the site. All water supply details shall be in accordance with Irish Water requirements.

Please refer to Waterman Moylan Drawing No's. 18-014-P040 to P044 for details of the watermain layout to serve the subject site.

4.2 Irish Water Pre Connection Enquiry

A pre-connection enquiry was submitted to Irish Water in respect of water supply to the proposed development. Subsequently, Irish Water have confirmed that based on the size of the proposed development and on the capacity currently available, that subject to a valid connection agreement being put in place, the proposed connection to the Irish Water network can be facilitated.

Further to the above, Irish Water advised that c. 140m of 150mm ID watermain network extension is required along with a new meter and a pressure reducing valve at the connection point.

The Irish Water Pre-Connection Enquiry Form Response Letter (Ref. No. 7663617994) is attached in Appendix A of this report

4.3 Water Demand Calculation

Water calculations providing details of the anticipated water consumption for the proposed development are illustrated in Table 6 below.

Table 6: Total Water Demand

Description	No. of Units	Population per Unit	PE	Flow l/h/day	Total Discharge (l/d)
Residential Units	661	2.7	1784.7	150	267,705
Crèche	1		55	50	2,750
Retail	1		10	30	300
				Total	270,755

The total water requirement from the public supply, for the development, is estimated at 270.76 m³/day.

4.4 Water Supply – General

Water Mains suitable for Works and approved by Irish Water shall be either ductile iron (DI) or polyethylene (PE), with PE80 or PE100 rating (MDPE, HDPE or HPPE).

The minimum depth of cover from the finished ground level to the external crown of a Water Main shall be 900mm. A greater depth of cover and/or greater strength pipe and/or a higher class of bedding may be required where high traffic loading is anticipated. Depths may be altered to avoid obstructions, including

separation distances between other utility services. The desirable maximum cover for a Service Connection pipe or a Water Main should be 1200mm, where practicable.

Sluice valves will be provided so that no more than 40 houses can be isolated at any time and hydrants provided so that each part of the dwellings are within 46 metres of a hydrant.

4.5 Water Conservation

The water demand for the development can be subdivided as follows:

Potable / Non-potable Breakdown

Detailed studies have quantified the breakdown between potable and non-potable uses for residential uses.

The following diagram illustrates the current percentage breakdown of water usage in domestic circumstances and is from Griggs and Shouler 1994 as published in Chapter 11 of 'Water, Sanitary & Waste Services for Buildings' by Wise and Sheffield.

It is proposed, as part of this development, to provide rain water butts on all properties to cater for the external water demand.

In addition, water conservation measures will be used, to further reduce overall water demand, including:

- Low volume flush / dual flush WC's
- Aerated shower heads
- Spray Taps
- Draw off tap controls
- Rainwater reuse water butts, as outlined above
- Leak detection measures through the metering of supply

5. Transport

5.1 Description of the Proposed Development

The proposed development consists of a Strategic Housing Development on residential zoned lands c. 2.5 km west of Drogheda town centre. The accommodation provided on the site consists of;

• 661 residential units with a crèche and retail unit

The main access for the site will be provided via a new 4 arm signalised junction with arms linking the Rathmullan Road (East), the Rathmullan Road (West) the proposed site access and the local access road to the south of the signalised junction. A second access into the housing development is proposed via a new priority junction to the south of the site onto the existing local access road.

Figure 3: Site Access

5.2 Traffic and Transport Assessment

The threshold for residential developments for which a Traffic Assessment is required (as set out in the Department of Transport Traffic Management Guidelines) is a development in excess of 200 units. Since the proposed development consists of 661 No. residential Units and a crèche, and is therefore above the threshold, a separate Traffic Assessment was carried out for the development and is included in this application under separate cover.

5.3 Existing Road Network

The Rathmullan Road is subject to a speed limit of 50km/h and is 2 km in length running from the priority junction with the R132 in Drogheda through to a priority junction with Rathmullan Road (Northern Arm) which continues towards the River Boyne, and a local un-named road which continues south. The Rathmullan Road along this section generally has a cross section of 7.3 m wide with footways running along both sides for the majority of its length.

The Rathmullan Road (northern arm) is a rural road with a width of c. 4m. It traverses the southern bank of the River Boyne and provides access to Oldbridge to the west. The local un-named road is a rural road with a width of c. 4 m. This provides access to several rural properties to the south and west and crosses the M1 via an over-pass.

The River Boyne Boardwalk traverses the eastern bank of the River Boyne. This is a shared pedestrian / cyclist route that provides access to Drogheda Town Centre (c. 2.5 km to the east) and Oldbridge (c. 1.8 km to the west).

An overview of the surrounding existing road network is shown in Figure 4.

Figure 4: Existing Road Network

5.4 Proposed Road Network

5.4.1 Site Access

Access to the subject site will be provided on Rathmullan Road to the east of the subject site by means of a proposed 4 arm signalised junction. The proposed position and layout of this signalised junction avoids the existing headwall and parapet wall on the drainage culvert and has been agreed with Meath County Council. Details of the signalised junction are shown on Waterman Moylan drawing No. 18-014-P050. A secondary site access is provided from the local access road to the south of the site by means of a proposed priority junction.

5.4.2 Internal Network

The proposed road layout incorporates a road hierarchy including an arterial route, link roads, local estate roads and shared surfaces / homezones. An overview of the road hierarchy is shown in Waterman Moylan drawing No. 18-014-P002 and P003.

Generally, the internal link roads and local estate roads are 6.0 m wide and footpaths are 1.8 m wide. Various traffic calming measures such as the avoidance of long straight sections, raised tables, pedestrian friendly crossings, on-street parking, and homezone areas, have been introduced to ensure a design speed of 30 km/h. Turning bays have been provided to comply with the Recommendations for Site Development Works. The proposed road layout is shown in detail on Waterman Moylan drawing No's 18-014-P006 to P009.

Pedestrian crossing points are located at various locations within the development such that unimpeded pedestrian movement along desire lines is facilitated. A network of shared cyclist / pedestrian pathways (3.0m wide) has been provided along key links throughout the development. A separated cycle track (2.0m wide) and footpath (2.0m wide) has been provided along the re-aligned local road along the site frontage to the south of the signalised junction. On low speed / low traffic volume roads such as local estate streets and homezones, cyclists will be kept on-road. The proposed pedestrian and cyclist links are shown on Waterman Moylan drawing No. 18-014-P004.

The internal road layout fully complies with the requirements of Design Manual for Urban Roads and Streets (DMURS). In this regard a separate DMURS statement has been prepared by the design team.

5.4.3 Proposed Upgrades

Further to discussions with Meath County Council, it is proposed to realign and upgrade the un-named local road along the site frontage to the south of the new signalised junction with Rathmullan Road. This road will form part of the proposed developments arterial link with a carriageway width of 7m and new kerb lines, road gullies and drainage. The proposed speed limit on this road is 50 km/h. A separated cycle track (2.0m wide) and footpath (2.0m wide) has also been provided along the extents of this road.

Upgrades are also proposed to Rathmullan Road along the site frontage to the north of the signalised junction. This includes the widening of the existing carriageway to 6 m and the provision of a 2m footpath linking the proposed development to the River Boyne Boardwalk. The proposed road and footpath upgrades are shown on Waterman Moylan drawing No. 18-014-P012.

The section of Rathmullan Road adjacent the eastern bank of the River Boyne, to the north of the subject site down to Oldbridge House, currently operates with a stop / yield one-way system in place as the River Boyne greenway is intermittently on-road in this area. It is proposed that this arrangement will be

maintained as this road is not intended to operate as a major link and therefore anticipated traffic volumes will be low.

Further to discussions with Louth County Council, it is proposed to upgrade the junction at Rathmullan Road and the R132, and also the Rathmullan Road / Marleys Lane junction. The junction upgrade works include the provision of an additional turning lanes and upgrades to the signal phasing. The details of same are provided on Waterman Moylan drawing No's. 18-014-P051 and P052. Louth County Council have advised that the proposed upgrade works are generally acceptable and have provided a letter of consent which is also included in Appendix H.

The proposed development will be constructed in 5 distinct phases which are illustrated on the enclosed Niall D Brennan Associates Architects drawing No. 17/094-PP-S-02 Rev B.

The delivery of the proposed road upgrades will be completed in tandem with the Phasing of the development. In this regard it is proposed that the new signalled controlled junction at the main access to the development will be completed as part of the Phase 1 works. The upgrade of the Rathmullan Road north of the development, which includes road widening and a new 2m wide footpath to link to the Boyne Greenway, will be completed as part of the Phase 1 & 2 works.

The proposed upgrade of the Rathmullan Road/Marleys Lane junction, within the Louth County Council administrative area will be carried out in Phase 1 of the works.

The proposed upgrade of the Rathmullan Road/R132 junction will be carried out during the Phase 2 & 3 works.

The proposed upgrade of the local road to the south of the development site, from the new signal controlled junction to the south west corner of the development will be completed as part of the Phase 3 & 4 works.

All of the road upgrades will be completed before the commencement of Phase 5.

5.5 Parking Provision

Section 11.9 of the Meath County Development Plan 2013-2019 (MCDP) sets out the maximum car parking standards for various development categories.

The car parking spaces provided with the proposed development area are set out in Table 7 below.

Table 7: Car Parking Permitted and Provided.

Land Use	Rate	Unit Numbers /GFA	Maximum Carparking Spaces Permitted (MCDP)	Carparking Spaces Provided	Visitor Carparking Spaces Provided
Dwellings	2 per dwelling	509 No. units	1,018	1,018 on-curtilage	53 on-street
1 & 2 Bedroom Apartments	1.25 per unit	22 No. units	28	28 on-street	6 on-street
3 & 4 Bedroom Apartments	2 per unit	131 No. units	262	163 on-street	37 on-street

Retail/Cafe	1 Per 20 sq. m	430.4	22	25 on-street	-
Crèche	1 per employee & dedicated set down area 1 per 5 children	486	20	10 spaces for staff and 7 Drop off spaces	
Total			1350	1,251	96

As can be seen from Table 7 above, the provision of car parking spaces complies with the requirements of the Meath County Development Plan 2013-2019.

5.6 Sustainable Access

5.6.1 Walking

As outlined above, a pedestrian link will be provided between the proposed development and the existing walkway along the River Boyne by the inclusion of a new 2.0m wide footpath along Rathmullan Road to the north-east. There is an existing continuous footpath along the north side of Rathmullan Road. The proposed development provides a connection to this footpath. A pedestrian link will also be facilitated between the proposed development and the adjacent residential scheme to the east, granted planning permission under Reg. Ref. LB170675.

5.6.2 Cycling

The proposed development includes the provision of internal shared cyclist / pedestrian facilities and a separate off-road cycle-track along the site frontage to the south of the signalised junction. Cyclist access to Drogheda Town Centre is along Rathmullan Road or via the River Boyne greenway.

5.6.3 Public Transport

The site is not directly served by public transport services, though the closest services would be approx. 1km west of the site access, being the Drogheda (Opp Hillview Estate) stop which is served by the 173 bus route.

Figure 5: Location of Public Transport Services

A summary of these stops can be seen below;

	Drogheda (Opp Hillview Estate)	
Service	Service Route	Frequency
173	West Street Drogheda - Dominick Street (Opp Church)	Hourly

	Rowan Heights	
Service	Service Route	Frequency
173	West Street Drogheda - Dominick Street (Opp Church)	Hourly

The Drogheda Bus Station is located 2.5m to the east of the subject site, which provides a high number of local and national bus routes.

The Drogheda Rail Station is located 3.5km to the east of the subject site, which is located on the Northern Commuter line running between Newry and Dublin Pearse Street. This line extends north to Belfast Central and south to Rosslare Eurosport.

APPENDICES

A. Irish Water Pre-Connection Enquiry Fee

CLARD DEVELOPMENTS c/o JAMIE CRAMPTON BLOCK S,EASTPOINT BUSINESS PARK ALFIE BYRNE ROAD DUBLIN 3

WATERMAN MOYLAN

File Ref: 12-014

RECEIVED

(8 OCT 2018

Action MC

Initial MC 35

UISCE EIREANN : IRISH WATER

Uisce Éireann Bosca OP 6000 Baile Átha Cliath 1

Irish Water PO Box 6000 Dublin 1 Ireland

T: +353 1 89 25000 F: +353 1 89 25001 www.water.ie

04 October 2018

Dear Sir/Madam,

Re: Customer Reference No 7663617994 pre-connection enquiry - Subject to contract | Contract denied Connection for 700 domestic units at Rathmullen Road, Drogheda, Co. Meath

Irish Water has reviewed your pre-connection enquiry in relation to

water and wastewater connections at RATHMULLEN ROAD, DROGHEDA CO. MEATH
Based upon the details you have provided with your pre-connection enquiry and on the capacity currently available as
assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your
proposed connection to the Irish Water network can be facilitated.

Water: To facilitate this development 140 metres of 150mm ID network extension is required along with a new meter & PRV at the connection point.

Wastewater: A new pumpstation is required to cater for the full site. Adjacent existing old P.S and further catchment area to be included in sizing at Irish Water cost. A new rising main to be laid for interim and full development to Rathmullen catchment. This will be at developers cost and to IW Tec 802 P.S standard. Rathmullen (LNRP) Local Network Reinforcement Project proposals to be implemented under IW growth (IW CIP funded).

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Utility Regulation.

If you have any further questions, please contact Allan Hannon from the design team on 01 8925318 or email ahannon@water.ie. For further information, visit www.water.ie/connections

Yours sincerely,

Maria O'Dwyer

Connections and Developer Services

Stiúrthóirí / Directors: Mike Quinn (Chairman), Jerny Grant, Cathal Marley, Brendan Murphy, Michael G. O'Sullivan
Oifig Chláraithe / Registered Office: Teach Cokall, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, DO1 NP86 / Cokall House, 24-26 Talbot Street, Dublin 1, DO1 NP86
Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares.
Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

B. Iris	sh \	Water	Letter	of	Design	Accep	tance
---------	------	-------	--------	----	--------	-------	-------

Clard Developments c/o Bradley Warren, Waterman Moylan Engineering Consultants, Block S, Eastpoint Business Park, Alfie Byrne Road, Dublin 3

24 June 2019

Re: Design Submission for Development at Rathmullen Road, Drogheda, Co. Meath(the "Development") (the "Design Submission") / 7663617994.

Uisce ÉireannBosca OP 448
Oifig Sheachadta
na Cathrach Theas
Cathair Chorcaí

Irish Water PO Box 448 South City Delivery Office Cork City

www.water.ie

Dear Bradley,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at www.water.ie/connections. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU) (https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "Self-Lay Works"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water Representative

Name: Allan Hannon Phone: 01 8925318 Email: ahannon@water.ie

Yours sincerely,

M Bugge

Maria O'Dwyer

Connections and Developer Services

Appendix A

Document Title & Revision

• 18-014-P001-B	Site Location Plan
• 18-014-P021-B	Proposed Drainage Layout Sheet 1 of 4
• 18-014-P022-B	Proposed Drainage Layout Sheet 2 of 4
• 18-014-P023-B	Proposed Drainage Layout Sheet 3 of 4
• 18-014-P024-B	Proposed Drainage Layout Sheet 4 of 4
• 17-096-P025-B	Public Foul Water Drainage Details
• 17-096-P026-B	Private Foul Water Drainage Details
• 18-014-P041-B	Proposed Water Supply Layout Sheet 1 of 4
• 18-014-P042-B	Proposed Water Supply Layout Sheet 2 of 4
• 18-014-P043-B	Proposed Water Supply Layout Sheet 3 of 4
• 18-014-P044-B	Proposed Water Supply Layout Sheet 4 of 4
• 17-096-P045-B	Typical Water Supply Construction Details Sheet 1 of 3
• 17-096-P047-B	Typical Water Supply Construction Details Sheet 3 of 3

Standard Details/Code of Practice Exemption: N/A

For further information, visit www.water.ie/connections

Notwithstanding any matters listed above, the Customer (including any appointed designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay Works. Acceptance of the Design Submission by Irish Water will not, in any way,

render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

C. Foul Water Calculations

Waterman Moylan		Page 1
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	<u> </u>

FOUL SEWERAGE DESIGN

<u>Design Criteria for Foul - Main</u>

Pipe Sizes STANDARD Manhole Sizes STANDARD

<pre>Industrial Flow (1/s/ha)</pre>	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.000
Flow Per Person (1/per/day)	165.00	Maximum Backdrop Height (m)	0.000
Persons per House	2.70	Min Design Depth for Optimisation (m)	1.200
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	0.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Foul - Main

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Ba Flow	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
F1.000	49.868	0.332	150.0	0.000	12		0.0	1.500	0	150	Pipe/Conduit	ð
F1.001	7.356	0.049	150.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ď
F1.002	13.386	0.089	150.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ď
F1.003	31.158	0.208	150.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	₩.
F2.000	39.314	0.655	60.0	0.000	6		0.0	1.500	0	150	Pipe/Conduit	ð
F2.001	48.408	0.807	60.0	0.000	3		0.0	1.500	0	150	Pipe/Conduit	ď
F1.004	63.069	1.051	60.0	0.000	11		0.0	1.500	0	225	Pipe/Conduit	₫*
F3.000	46.685	0.467	100.0	0.000	15		0.0	1.500	0	150	Pipe/Conduit	ð
F3.001	46.178	0.770	60.0	0.000	4		0.0	1.500	0	225	Pipe/Conduit	ď
F1.005	63.869	0.426	150.0	0.000	12		0.0	1.500	0	225	Pipe/Conduit	ď

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
F1.000	33.800	0.000	0.0	12	0.0	18	0.31	0.71	12.6	0.4	
F1.001	33.468	0.000	0.0	12	0.0	18	0.31	0.71	12.6	0.4	
F1.002	33.419	0.000	0.0	12	0.0	18	0.31	0.71	12.6	0.4	
F1.003	33.329	0.000	0.0	12	0.0	18	0.31	0.71	12.6	0.4	
F2.000	34.580	0.000	0.0	6	0.0	11	0.34	1.13	20.0	0.2	
F2.001	33.925	0.000	0.0	9	0.0	13	0.39	1.13	20.0	0.3	
F1.004	33.043	0.000	0.0	32	0.0	21	0.55	1.48	59.0	1.0	
F3.000	32.900	0.000	0.0	15	0.0	18	0.38	0.88	15.5	0.5	
F3.001	32.358	0.000	0.0	19	0.0	16	0.46	1.48	59.0	0.6	
F1.005	31.589	0.000	0.0	63	0.0	35	0.49	0.94	37.2	1.9	
			©198	2-201	8 Innovy	7ZE					

Waterman Moylan		Page 2
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PN	Length (m)	Fall	Slope (1:X)	Area (ha)	Houses	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
F1.006	51.380	0.257	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	<u>.</u>
F4.000	43.233	0.721	60.0	0.000	6	0.0	1.500	0	150	Pipe/Conduit	ð
	47.524		60.0	0 000	8		1.500	0		Pipe/Conduit	
	52.869				6		1.500	0		Pipe/Conduit	0
	61.729				9		1.500	0		Pipe/Conduit	•
F4.001	22.624	0.113	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	•
F1.007	64.312	0.322	200.0	0.000	14	0.0	1.500	0	225	Pipe/Conduit	₽
F6.000	38.594	0.772	50.0	0.000	11	0.0	1.500	0	150	Pipe/Conduit	0
F6.001	38.594	0.386	100.0	0.000	2	0.0	1.500	0	150	Pipe/Conduit	ď
F1.008	60.987	1.016	60.0	0.000	15	0.0	1.500	0	225	Pipe/Conduit	•
F7.000	47.382	0.790	60.0	0.000	4	0.0	1.500	0	150	Pipe/Conduit	0
F8.000	37.977	0.633	60.0	0.000	12	0.0	1.500	0	150	Pipe/Conduit	0
F8.001	18.604	0.124	150.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ŏ

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)		Vel (m/s)	Cap (1/s)	Flow (1/s)
F1.006	31.163	0.000	0.0	63	0.0	38	0.44	0.81	32.2	1.9
F4.000	31.600	0.000	0.0	6	0.0	11	0.34	1.13	20.0	0.2
F5.000	32.000	0.000	0.0	8	0.0	12	0.37	1.13	20.0	0.2
F5.001	31.208	0.000	0.0	14	0.0	17	0.37	0.88	15.5	0.4
F5.002	30.604	0.000	0.0	23	0.0	22	0.36	0.94	37.2	0.7
F4.001	30.193	0.000	0.0	29	0.0	26	0.35	0.81	32.2	0.9
F1.007	30.080	0.000	0.0	106	0.0	49	0.52	0.81	32.2	3.3
F6.000	30.500	0.000	0.0	11	0.0	13	0.44	1.24	21.9	0.3
F6.001	29.728	0.000	0.0	13	0.0	17	0.37	0.88	15.5	0.4
F1.008	29.267	0.000	0.0	134	0.0	40	0.85	1.48	59.0	4.1
F7.000	28.650	0.000	0.0	4	0.0	9	0.30	1.13	20.0	0.1
F8.000	28.335	0.000	0.0	12	0.0	14	0.42	1.13	20.0	0.4
F8.001	27.702	0.000	0.0	12	0.0	18	0.31	0.71	12.6	0.4

Waterman Moylan		Page 3
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PN	Length (m)	Fall	Slope (1:X)	Area (ha)	Houses	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
F7.001	14.100	0.094	150.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	€
F1.009	20.356	0.102	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	€
F1.010	63.099	2.103	30.0	0.000	22	0.0	1.500	0	225	Pipe/Conduit	ď
F9.000	86.330	0.576	150.0	0.000	20	0.0	1.500	0	225	Pipe/Conduit	ð
F1.011	62.612	1.044	60.0	0.000	12	0.0	1.500	0	225	Pipe/Conduit	€
F10.000	50.931	0.340	150.0	0.000	15	0.0	1.500	0	150	Pipe/Conduit	ð
F10.001	50.931	0.340	150.0	0.000	5	0.0	1.500	0	225	Pipe/Conduit	ŏ
F1.012	60.600	0.303	200.0	0.000	12	0.0	1.500	0	225	Pipe/Conduit	€
F11.000	35.269	0.353	100.0	0.000	16	0.0	1.500	0	150	Pipe/Conduit	ð
F11.001	48.325	0.322	150.0	0.000	16	0.0	1.500	0	225	Pipe/Conduit	ď
F12.000	56.311	0.939	60.0	0.000	7	0.0	1.500	0	150	Pipe/Conduit	ð
F11.002	43.442	0.724	60.0	0.000	2	0.0	1.500	0	225	Pipe/Conduit	•
F1.013	53.549	0.357	150.0	0.000	39	0.0	1.500	0	225	Pipe/Conduit	₫

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)		Cap (1/s)	Flow (1/s)	
F7.001	27.578	0.000	0.0	16	0.0	21	0.34	0.71	12.6	0.5	
F1.009 F1.010	27.409 27.307	0.000	0.0	150 172	0.0	58 39	0.58 1.17		32.2 83.5	4.6 5.3	
F9.000	25.250	0.000	0.0	20	0.0	20	0.34	0.94	37.2	0.6	
F1.011	24.674	0.000	0.0	204	0.0	50	0.97	1.48	59.0	6.3	
F10.000 F10.001		0.000	0.0	15 20	0.0	20 20	0.33	0.71 0.94		0.5	
F1.012	23.346	0.000	0.0	236	0.0	73	0.65	0.81	32.2	7.3	
F11.000 F11.001		0.000	0.0	16 32	0.0	19 25	0.39			0.5	
F12.000	24.400	0.000	0.0	7	0.0	11	0.36	1.13	20.0	0.2	
F11.002	22.650	0.000	0.0	41	0.0	23	0.59	1.48	59.0	1.3	
F1.013	21.926	0.000	0.0	316	0.0	79	0.79	0.94	37.2	9.8	
			©198	2-201	8 Innovy	ze					

Waterman Moylan		Page 4
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PN	Length	Fall	Slope	Area	Houses	Ва	ıse	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm)	SECT	(mm)		Design
F1.014	24.351	0.696	35.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	₩
F1.015	24.588	0.703	35.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	•
F13.000	35.790	1.193	30.0	0.000	11		0.0	1.500	0	150	Pipe/Conduit	€
F13.001	37.550	0.376	100.0	0.000	11		0.0	1.500	0	225	Pipe/Conduit	<u>-</u>
F13.002	88.570	2.528	35.0	0.000	20		0.0	1.500	0	225	Pipe/Conduit	<u>.</u>
F13.003	50.417	2.521	20.0	0.000	6		0.0	1.500	0	225	Pipe/Conduit	ď
F14.000	48.382	0.806	60.0	0.000	8		0.0	1.500	0	150	Pipe/Conduit	ð
F15.000	63.235	1.581	40.0	0.000	9		0.0	1.500	0	150	Pipe/Conduit	ð
F13.004	70.576	0.471	150.0	0.000	9		0.0	1.500	0	225	Pipe/Conduit	₩
F13.005	10.683	0.071	150.0	0.000	2		0.0	1.500	0	225	Pipe/Conduit	•
F16.000	19.839	0.331	60.0	0.000	2		0.0	1.500	0	150	Pipe/Conduit	ð
F13.006	34.337	1.373	25.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	₩
F13.007	23.143	0.701	33.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	•
F1.016	71.117	1.922	37.0	0.000	7		0.0	1.500	0	225	Pipe/Conduit	€
F1.017	50.198	1.357	37.0	0.000	6		0.0	1.500	0		Pipe/Conduit	•

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)			Cap (1/s)	Flow (1/s)	
	21.569	0.000	0.0	316	0.0	54	1.33		77.3	9.8	
F1.015	20.873	0.000	0.0	316	0.0	54	1.33	1.94	77.3	9.8	
F13.000	30.295	0.000	0.0	11	0.0	12	0.52	1.60	28.3	0.3	
F13.001	29.027	0.000	0.0	22	0.0	19	0.41	1.15	45.6	0.7	
F13.002	28.652	0.000	0.0	42	0.0	21	0.72	1.94	77.3	1.3	
F13.003	26.123	0.000	0.0	48	0.0	19	0.91	2.57	102.3	1.5	
F14.000	24.100	0.000	0.0	8	0.0	12	0.37	1.13	20.0	0.2	
F15.000	24.400	0.000	0.0	9	0.0	12	0.44	1.39	24.5	0.3	
F13.004	22.744	0.000	0.0	74	0.0	38	0.52	0.94	37.2	2.3	
F13.005	22.274	0.000	0.0	76	0.0	38	0.52	0.94	37.2	2.4	
F16.000	22.900	0.000	0.0	2	0.0	6	0.24	1.13	20.0	0.1	
F13.006	22.202	0.000	0.0	78	0.0	25	0.98	2.30	91.5	2.4	
F13.007	20.829	0.000	0.0	78	0.0	27	0.89	2.00	79.6	2.4	
F1.016	20.128	0.000	0.0	401	0.0	62	1.40	1.89	75.2	12.4	
F1.017	18.206	0.000	0.0	407	0.0	62	1.40	1.89	75.2	12.6	
			©198	2-2018	Innovy	ze					

Waterman Moylan		Page 5
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	·

PN	Length		-		Houses		ase	k	HYD		Section Type	Auto
	(m)	(m)	(1:X)	(ha)		FLOW	(1/s)	(mm)	SECT	(mm)		Design
F1.018	6.120	0.153	40.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	€
F1.019	7.616	0.038	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ğ
F17.000	47.776	1.363	35.0	0.000	8		0.0	1.500	0	150	Pipe/Conduit	ð
F17.001	59.680	0.398	150.0	0.000	8		0.0	1.500	0	150	Pipe/Conduit	₩
F17.002	11.074	0.074	150.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	₩
F17.003	28.947	0.193	150.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	₩
F17.004	63.240	0.316	200.0	0.000	11		0.0	1.500	0	225	Pipe/Conduit	₩
F17.005	12.223	0.204	60.0	0.000	3		0.0	1.500	0	225	Pipe/Conduit	₩.
F17.006	16.572	0.276	60.0	0.000	2		0.0	1.500	0	225	Pipe/Conduit	•
F18.000	49.909	0.832	60.0	0.000	8		0.0	1.500	0	150	Pipe/Conduit	ð
F19.000	87.942	0.879	100.0	0.000	18		0.0	1.500	0	150	Pipe/Conduit	ð
F18.001	69.695	1.742	40.0	0.000	8		0.0	1.500	0	225	Pipe/Conduit	₩.
					_							_
F17.007	38.903	0.195	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	₩.
											-1 /- 1	_
F20.000	72.639			0.000	8			1.500	0		Pipe/Conduit	ð
F20.001	44.595	0.557	80.0	0.000	8		0.0	1.500	0	150	Pipe/Conduit	●

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
F1.018	16.849	0.000	0.0	407	0.0	64	1.36	1.82	72.3	12.6
F1.019	16.696	0.000	0.0	407	0.0	98	0.76	0.81	32.2	12.6
F17.000	32.900	0.000	0.0	8	0.0	11	0.45	1.48	26.2	0.2
F17.001	31.537	0.000	0.0	16	0.0	21	0.34	0.71	12.6	0.5
F17.002	31.139	0.000	0.0	16	0.0	21	0.34	0.71	12.6	0.5
F17.003	31.065	0.000	0.0	16	0.0	21	0.34	0.71	12.6	0.5
F17.004	30.797	0.000	0.0	27	0.0	25	0.34	0.81	32.2	0.8
F17.005	30.481	0.000	0.0	30	0.0	20	0.54	1.48	59.0	0.9
F17.006	30.277	0.000	0.0	32	0.0	21	0.55	1.48	59.0	1.0
F18.000	31.600	0.000	0.0	8	0.0	12	0.37	1.13	20.0	0.2
F19.000	32.075	0.000	0.0	18	0.0	20	0.41	0.88	15.5	0.6
F18.001	30.693	0.000	0.0	34	0.0	19	0.64	1.82	72.3	1.1
F17.007	28.951	0.000	0.0	66	0.0	39	0.45	0.81	32.2	2.0
F20.000	31.520	0.000	0.0	8	0.0	12	0.37	1.13	20.0	0.2
F20.001	30.309	0.000	0.0	16	0.0	18	0.42	0.98	17.3	0.5

Waterman Moylan		Page 6
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PN	Length (m)	Fall	Slope (1:X)	Area (ha)	Houses	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
F17.008					17		1.500	0		Pipe/Conduit	₩.
F17.009			200.0		7		1.500	0		Pipe/Conduit	●
F17.010				0.000	27		1.500	0		Pipe/Conduit	●
F17.011	15.551	0.622	25.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	€
F21.000				0.000	8		1.500	0		Pipe/Conduit	0
F21.001	27.520	1.101	25.0	0.000	4	0.0	1.500	0		Pipe/Conduit	₩
F21.002	56.087	1.602	35.0	0.000	16	0.0	1.500	0	225	Pipe/Conduit	₩
F21.003	29.503	0.148	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	♂
F22.000	18.336	0.306	60.0	0.000	4	0.0	1.500	0	150	Pipe/Conduit	0
F23.000	16.734	0.279	60.0	0.000	4	0.0	1.500	0	150	Pipe/Conduit	0
F23.001	14.889	0.248	60.0	0.000	3	0.0	1.500	0	150	Pipe/Conduit	ĕ
											_
F24.000	26.400	0.440	60.0	0.000	4	0.0	1.500	0	150	Pipe/Conduit	ð
											_
F23.002	11.954	0.080	150.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	₩
F23.003	50.416	0.336	150.0	0.000	8	0.0	1.500	0	150	Pipe/Conduit	•
											_
F22.001	40.356	0.202	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	₩

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
F17.008	28.756	0.000	0.0	99	0.0	47	0.51	0.81	32.2	3.1	
F17.009	28.429	0.000	0.0	106	0.0	49	0.52	0.81	32.2	3.3	
F17.010	28.261	0.000	0.0	133	0.0	33	1.16	2.30	91.5	4.1	
F17.011	24.873	0.000	0.0	133	0.0	33	1.16	2.30	91.5	4.1	
F21.000	30.300	0.000	0.0	8	0.0	10	0.47	1.60	28.3	0.2	
F21.001	28.487	0.000	0.0	12	0.0	12	0.57	1.76	31.1	0.4	
F21.002	27.311	0.000	0.0	28	0.0	17	0.63	1.94	77.3	0.9	
F21.003	25.708	0.000	0.0	28	0.0	26	0.35	0.81	32.2	0.9	
F22.000	28.000	0.000	0.0	4	0.0	9	0.30	1.13	20.0	0.1	
F23.000	28.800	0.000	0.0	4	0.0	9	0.30	1.13	20.0	0.1	
F23.001	28.521	0.000	0.0	7	0.0	11	0.36	1.13	20.0	0.2	
F24.000	28.400	0.000	0.0	4	0.0	9	0.30	1.13	20.0	0.1	
F23.002	27.960	0.000	0.0	11	0.0	17	0.30	0.71	12.6	0.3	
F23.003	27.880	0.000	0.0	19	0.0	22	0.36	0.71	12.6	0.6	
F22.001	27.469	0.000	0.0	23	0.0	23	0.32	0.81	32.2	0.7	

Waterman Moylan		Page 7
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Diamage
Micro Drainage	Network 2018.1.1	

				_		_						
PN	Length		Slope		Houses		ase	k	HYD		Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm)	SECT	(mm)		Design
F21.004	61.027	0.305	200.0	0.000	7		0.0	1.500	0	225	Pipe/Conduit	ď
F21.005	35.897	0.179		0.000	0			1.500	0	225	Pipe/Conduit	8
F21.006	54.116	0.271	200.0	0.000	6			1.500	0	225	Pipe/Conduit	•
F21.007	54.810	0.365	150.0	0.000	7		0.0	1.500	0	225	Pipe/Conduit	•
F21.008	26.523	0.442	60.0	0.000	3		0.0	1.500	0	225	Pipe/Conduit	•
											-	•
F17.012	44.720	0.745	60.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	€
F17.013	62.197	1.555	40.0	0.000	4		0.0	1.500	0	225	Pipe/Conduit	ĕ
F17.014	15.662	0.522	30.0	0.000	2		0.0	1.500	0	225	Pipe/Conduit	ŏ
F17.015	33.996	1.133	30.0	0.000	11		0.0	1.500	0	225	Pipe/Conduit	ŏ
F17.016	25.899	0.863	30.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ŏ
												_
F25.000	59.120	0.985	60.0	0.000	8		0.0	1.500	0	150	Pipe/Conduit	ð
F25.001	59.120	0.985	60.0	0.000	4		0.0	1.500	0	150	Pipe/Conduit	ĕ
F25.002	23.014	0.384	60.0	0.000	2		0.0	1.500	0	150	Pipe/Conduit	ĕ
F25.003	44.857	1.282	35.0	0.000	4		0.0	1.500	0	150	Pipe/Conduit	ĕ
F25.004	67.734	0.339	200.0	0.000	5		0.0	1.500	0	225	Pipe/Conduit	ĕ
F25.005	76.352	0.382	200.0	0.000	7		0.0	1.500	0	225	Pipe/Conduit	ĕ
												-
F17.017	10.116	0.422	24.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	€
F17.018	22.321	0.446	50.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ť

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
F21.004	25.561	0.000	0.0	58	0.0	36	0.43	0.81	32.2	1.8
F21.005	25.256	0.000	0.0	58	0.0	36	0.43	0.81	32.2	1.8
F21.006		0.000	0.0	64	0.0	38	0.45	0.81	32.2	2.0
F21.007	24.805	0.000	0.0	71	0.0	37	0.51	0.94	37.2	2.2
F21.008	24.440	0.000	0.0	74	0.0	30	0.71	1.48	59.0	2.3
F17.012	23.998	0.000	0.0	207	0.0	50	0.97	1.48	59.0	6.4
F17.013	23.253	0.000	0.0	211	0.0	46	1.13	1.82	72.3	6.5
F17.014	21.698	0.000	0.0	213	0.0	43	1.25	2.10	83.5	6.6
F17.015	21.176	0.000	0.0	224	0.0	44	1.27	2.10	83.5	6.9
F17.016	20.043	0.000	0.0	224	0.0	44	1.27	2.10	83.5	6.9
F25.000	22 200	0.000	0.0	8	0.0	12	0.37	1.13	20.0	0.2
F25.001		0.000	0.0	12	0.0	14	0.42	1.13	20.0	0.4
F25.002		0.000	0.0	14	0.0	16	0.45	1.13	20.0	0.4
F25.003		0.000	0.0	18	0.0	15	0.58	1.48	26.2	0.6
F25.004		0.000	0.0	23	0.0	23	0.32	0.81	32.2	0.7
F25.005	19.251	0.000	0.0	30	0.0	27	0.35	0.81	32.2	0.9
F17.017	18.869	0.000	0.0	254	0.0	44	1.42	2.35	93.4	7.9
F17.018		0.000	0.0	254	0.0	53	1.10	1.63	64.6	7.9

Waterman Moylan		Page 8
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PN Length Fall Slope Area Houses Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) Flow (1/s) (mm) SECT (mm) Design

F1.020 7.908 0.079 100.0 0.000 0 0.0 1.500 o 225 Pipe/Conduit

Network Results Table

PN US/IL Σ Area Σ Base Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (m) (ha) Flow (1/s) (1/s) (mm) (m/s) (m/s) (1/s) (1/s) F1.020 16.658 0.000 0.0 661 0.0 106 1.12 1.15 45.6 20.4

Waterman Moylan	Page 9	
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	1

Manhole Schedules for Foul - Main

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter	Backdrop (mm)
		(,		(,			(/			\ <i>,</i>	(/
F1	35.200	1.400	Open Manhole	1200	F1.000	33.800	150				
F2	36.000	2.532	Open Manhole	1200	F1.001	33.468	150	F1.000	33.468	150	
F3	35.900	2.481	Open Manhole	1200	F1.002	33.419	150	F1.001	33.419	150	
F4	35.350	2.021	Open Manhole	1200	F1.003	33.329	150	F1.002	33.329	150	
F5	36.400	1.820	Open Manhole	1200	F2.000	34.580	150				
F6	35.700	1.775	Open Manhole	1200	F2.001	33.925	150	F2.000	33.925	150	
F7	35.000	1.957	Open Manhole	1200	F1.004	33.043	225	F1.003	33.122	150	4
								F2.001	33.118	150	
F8	34.800	1.900	Open Manhole	1200	F3.000	32.900	150				
F9	34.150	1.792	Open Manhole	1200	F3.001	32.358	225	F3.000	32.433	150	
F10	33.750	2.161	Open Manhole	1200	F1.005	31.589	225	F1.004	31.992	225	403
								F3.001	31.589	225	
F11	33.300	2.137	Open Manhole	1200	F1.006	31.163	225	F1.005	31.163	225	
F12	33.350	1.750	Open Manhole	1200	F4.000	31.600	150				
F13	33.350	1.350	Open Manhole	1200	F5.000	32.000	150				
F14	33.050	1.842	Open Manhole	1200	F5.001	31.208	150	F5.000	31.208	150	
F15	32.500	1.896	Open Manhole	1200	F5.002	30.604	225	F5.001	30.679	150	
F16	32.950	2.757	Open Manhole	1200	F4.001	30.193	225	F4.000	30.879	150	612
								F5.002	30.193	225	
F17	32.800	2.720	Open Manhole	1200	F1.007	30.080	225	F1.006	30.906	225	826
								F4.001	30.080	225	
F18	32.200	1.700	Open Manhole	1200	F6.000	30.500	150				
F19	31.950	2.222	Open Manhole	1200	F6.001	29.728	150	F6.000	29.728	150	
F20	31.800	2.533	Open Manhole	1200	F1.008	29.267	225	F1.007	29.758	225	491
								F6.001	29.342	150	
F21	30.050	1.400	Open Manhole	1200	F7.000	28.650	150				
F22	29.900	1.565	Open Manhole	1200	F8.000	28.335	150				
F23	30.200	2.498	Open Manhole	1200	F8.001	27.702	150	F8.000	27.702	150	
F24	30.450	2.872	Open Manhole	1200	F7.001	27.578	150	F7.000	27.860	150	282
								F8.001	27.578	150	
F25	30.450	3.041	Open Manhole	1200	F1.009	27.409	225	F1.008	28.251	225	842
								F7.001	27.484	150	
F26	29.850	2.543	Open Manhole	1200	F1.010	27.307	225	F1.009	27.307	225	
F27	26.550	1.300	Open Manhole	1200	F9.000	25.250	225				
F28	27.550	2.876	Open Manhole	1200	F1.011	24.674	225	F1.010	25.204	225	529
								F9.000	24.674	225	
F29	25.150	1.050	Open Manhole	1200	F10.000	24.100	150				
F30	24.850	1.165	Open Manhole	1200	F10.001	23.685	225	F10.000	23.760	150	
				©1982-	2018 In	novyze					

Waterman Moylan	Page 10	
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	1

Manhole Schedules for Foul - Main

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
F31	25.850	2.504	Open Manhole	1200	F1.012	23.346	225	F1.011	23.631	225	285
								F10.001	23.346	225	
F32	24.900	1.500	Open Manhole	1200	F11.000	23.400	150				
F33	24.650	1.678	Open Manhole	1200	F11.001	22.972	225	F11.000	23.047	150	
F34	25.750	1.350	Open Manhole	1200	F12.000	24.400	150				
F35	25.400	2.750	Open Manhole	1200	F11.002	22.650	225	F11.001	22.650	225	
								F12.000	23.461	150	736
F36	25.100	3.174	Open Manhole	1200	F1.013	21.926	225	F1.012	23.043	225	1117
								F11.002	21.926	225	
F37			Open Manhole	1200	F1.014	21.569	225	F1.013	21.569	225	
F38	23.500	2.627	Open Manhole	1200	F1.015	20.873	225	F1.014	20.873	225	
F39	31.700	1.405	Open Manhole	1200	F13.000	30.295	150				
F40	31.350	2.323	Open Manhole	1200	F13.001	29.027	225	F13.000	29.102	150	
F41	30.900	2.249	Open Manhole	1200	F13.002	28.652	225	F13.001	28.652	225	
F42			-	1200	F13.003	26.123	225	F13.002	26.123	225	
F43	25.450	1.350	Open Manhole	1200	F14.000	24.100	150				
F44	25.800	1.400	Open Manhole	1200	F15.000	24.400	150				
F45	25.100	2.356	Open Manhole	1200	F13.004	22.744	225	F13.003	23.602	225	858
								F14.000	23.294	150	475
								F15.000	22.819	150	
			Open Manhole	1200	F13.005	22.274	225	F13.004	22.274	225	
F47			Open Manhole	1200	F16.000	22.900	150				
F48	24.200	1.998	Open Manhole	1200	F13.006	22.202	225	F13.005	22.202	225	
								F16.000	22.569	150	292
F49			Open Manhole	1200	F13.007	20.829	225	F13.006	20.829	225	
F50	22.400	2.272	Open Manhole	1200	F1.016	20.128	225	F1.015	20.171	225	43
								F13.007	20.128	225	
F51			Open Manhole	1200	F1.017	18.206	225		18.206	225	
F52			-	1200	F1.018	16.849	225	F1.017	16.849	225	
			Open Manhole	1200	F1.019	16.696	225	F1.018	16.696	225	
			Open Manhole		F17.000	32.900	150				
			Open Manhole		F17.001	31.537		F17.000	31.537	150	
			Open Manhole		F17.002	31.139		F17.001	31.139	150	
			Open Manhole		F17.003	31.065		F17.002	31.065	150	
F58			Open Manhole		F17.004	30.797		F17.003	30.872	150	
F59			Open Manhole		F17.005	30.481		F17.004	30.481	225	
F60			Open Manhole		F17.006	30.277		F17.005	30.277	225	
F61	33.230	1.630	Open Manhole	1200	F18.000	31.600	150				
				©1982-	2018 In	novyze					

Waterman Moylan						
Marine House	18-014					
Clanwilliam Place	Rathmullan					
Dublin 2 Ireland	Drainage Calculations	Micro				
Date 11/06/2019	Designed by BW	Drainage				
File MICRODRAINAGE.MDX	Checked by JG	niailiade				
Micro Drainage	Network 2018.1.1					

Manhole Schedules for Foul - Main

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
F62	33.500	1.425	Open Manhole	1200	F19.000	32.075	150				
F63	32.850	2.157	Open Manhole	1200	F18.001	30.693	225	F18.000	30.768	150	
								F19.000	31.196	150	427
F64	31.450	2.499	Open Manhole	1200	F17.007	28.951	225	F17.006	30.001	225	1050
								F18.001	28.951	225	
F65	32.870	1.350	Open Manhole	1200	F20.000	31.520	150				
F66	31.850	1.541	Open Manhole	1200	F20.001	30.309	150	F20.000	30.309	150	
F67	31.150	2.394	Open Manhole	1200	F17.008	28.756	225	F17.007	28.756	225	
								F20.001	29.752	150	921
F68	30.700	2.271	Open Manhole	1200	F17.009	28.429	225	F17.008	28.429	225	
F69	30.610	2.349	Open Manhole	1200	F17.010	28.261	225	F17.009	28.261	225	
F70	26.320	1.447	Open Manhole	1200	F17.011	24.873	225	F17.010	24.873	225	
F71	31.800	1.500	Open Manhole	1200	F21.000	30.300	150				
F72	29.850	1.363	Open Manhole	1200	F21.001	28.487	150	F21.000	28.487	150	
F73	29.000	1.689	Open Manhole	1200	F21.002	27.311	225	F21.001	27.386	150	
F74	27.150	1.442	Open Manhole	1200	F21.003	25.708	225	F21.002	25.708	225	
F75	29.400	1.400	Open Manhole	1200	F22.000	28.000	150				
F76	30.200	1.400	Open Manhole	1200	F23.000	28.800	150				
F77	30.050	1.529	Open Manhole	1200	F23.001	28.521	150	F23.000	28.521	150	
F78	29.500	1.100	Open Manhole	1200	F24.000	28.400	150				
F79	29.900	1.940	Open Manhole	1200	F23.002	27.960	150	F23.001	28.273	150	313
								F24.000	27.960	150	
F80	29.850	1.970	Open Manhole	1200	F23.003	27.880	150	F23.002	27.880	150	
F81	29.870	2.401	Open Manhole	1200	F22.001	27.469	225	F22.000	27.694	150	150
								F23.003	27.544	150	
F82	29.150	3.589	Open Manhole	1200	F21.004	25.561	225	F21.003	25.561	225	
								F22.001	27.267	225	1707
			Open Manhole		F21.005	25.256	225	F21.004	25.256	225	
F84	28.150	3.074	Open Manhole	1200	F21.006	25.076	225	F21.005	25.076	225	
			Open Manhole	l .	F21.007	24.805		F21.006	24.805	225	
			Open Manhole	1	F21.008	24.440		F21.007	24.440	225	
F87	26.000	2.002	Open Manhole	1200	F17.012	23.998	225	F17.011	24.251	225	253
								F21.008	23.998	225	
			Open Manhole		F17.013	23.253		F17.012	23.253	225	
			Open Manhole	1	F17.014	21.698	225	F17.013	21.698	225	
			Open Manhole		F17.015	21.176	225	F17.014	21.176	225	
			Open Manhole		F17.016	20.043	225	F17.015	20.043	225	
F92	24.840	1.540	Open Manhole	1200	F25.000	23.300	150				
				©1982-	2018 In	novyze					

Waterman Moylan	Page 12	
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

	Manhole Schedules for Foul - Main											
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)	
F93	23.900	1.585	Open Manhole	1200	F25.001	22.315	150	F25.000	22.315	150		
F94	22.950	1.620	Open Manhole	1200	F25.002	21.330	150	F25.001	21.330	150		
F95	22.350	1.404	Open Manhole	1200	F25.003	20.946	150	F25.002	20.946	150		
F96	21.000	1.411	Open Manhole	1200	F25.004	19.589	225	F25.003	19.664	150		
F97	22.800	3.549	Open Manhole	1200	F25.005	19.251	225	F25.004	19.251	225		
F98	21.000	2.131	Open Manhole	1200	F17.017	18.869	225	F17.016	19.179	225	310	
								F25.005	18.869	225		
F99	20.500	2.052	Open Manhole	1200	F17.018	18.448	225	F17.017	18.448	225		
F100	19.500	2.842	Open Manhole	1200	F1.020	16.658	225	F1.019	16.658	225		
								F17.018	18.001	225	1343	
F	18.500	1.921	Open Manhole	0		OUTFALL		F1.020	16.579	225		

Waterman Moylan		Page 13
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Diamage
Micro Drainage	Network 2018.1.1	-

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	0	150	F1	35.200	33.800	1.250	Open Manhole	1200
F1.001	0	150	F2	36.000	33.468	2.382	Open Manhole	1200
F1.002	0	150	F3	35.900	33.419	2.331	Open Manhole	1200
F1.003	0	150	F4	35.350	33.329	1.871	Open Manhole	1200
F2.000	0	150	F5	36.400	34.580	1.670	Open Manhole	1200
F2.001	0	150	F6	35.700	33.925	1.625	Open Manhole	1200
F1.004	0	225	F7	35.000	33.043	1.732	Open Manhole	1200
F3.000	0	150	F8	34.800	32.900	1.750	Open Manhole	1200
F3.001	0	225	F9	34.150	32.358	1.567	Open Manhole	1200
F1.005	0	225	F10	33.750	31.589	1.936	Open Manhole	1200
F1.006	0	225	F11	33.300	31.163	1.912	Open Manhole	1200
F4.000	0	150	F12	33.350	31.600	1.600	Open Manhole	1200
F5.000	0	150	F13	33.350	32.000	1.200	Open Manhole	1200
F5.001	0	150	F14	33.050	31.208	1.692	Open Manhole	1200
F5.002	0	225	F15	32.500	30.604	1.671	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)
F1.000	49.868	150.0	F2	36.000	33.468	2.382	Open Manhole	1200
F1.001	7.356	150.0	F3	35.900	33.419	2.331	Open Manhole	1200
F1.002	13.386	150.0	F4	35.350	33.329		Open Manhole	
F1.003	31.158	150.0	F7	35.000	33.122	1.728	Open Manhole	1200
F2.000	39.314	60.0	F6	35.700	33.925	1.625	Open Manhole	1200
F2.001	48.408	60.0	F7	35.000	33.118	1.732	Open Manhole	1200
F1.004	63.069	60.0	F10	33.750	31.992	1.533	Open Manhole	1200
F3.000	46.685	100.0	F9	34.150	32.433	1.567	Open Manhole	1200
F3.001	46.178	60.0	F10	33.750	31.589	1.936	Open Manhole	1200
F1.005	63.869	150.0	F11	33.300	31.163	1.912	Open Manhole	1200
F1.006	51.380	200.0	F17	32.800	30.906	1.669	Open Manhole	1200
F4.000	43.233	60.0	F16	32.950	30.879	1.921	Open Manhole	1200
F5.000	47.524	60.0	F14	33.050	31.208	1.692	Open Manhole	1200
F5.001	52.869	100.0	F15	32.500	30.679	1.671	Open Manhole	1200
F5.002	61.729	150.0	F16	32.950	30.193	2.532	Open Manhole	1200
				©1982-	-2018 I	nnovyze		

Waterman Moylan		Page 14
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
F4.001	0	225	F16	32.950	30.193	2.532	Open Manhole	1200
E1 007		225	F17	22 000	20 000	2 405	Onen Manhala	1200
F1.007	0	225	FI /	32.800	30.080	2.495	Open Manhole	1200
F6.000	0	150	F18	32.200	30.500	1.550	Open Manhole	1200
	_						-	
F6.001	0	150	F19	31.950	29.728	2.072	Open Manhole	1200
F1.008	0	225	F20	31.800	29.267	2 308	Open Manhole	1200
F1.000	O	223	FZU	31.000	29.201	2.300	Open Mannoie	1200
F7.000	0	150	F21	30.050	28.650	1.250	Open Manhole	1200
27.000	Ü	100		00.000	20.000	1.200	open namero	1200
F8.000	0	150	F22	29.900	28.335	1.415	Open Manhole	1200
F8.001	0	150	F23	30.200	27.702	2.348	Open Manhole	1200
F7.001	0	150	F24	30.450	27.578	2.722	Open Manhole	1200
F1.009	0	225	F25	30.450	27.409	2.816	Open Manhole	1200
F1.010	0	225	F26	29.850	27.307	2.318	Open Manhole	1200
	J							
F9.000	0	225	F27	26.550	25.250	1.075	Open Manhole	1200
							-	

<u>Downstream Manhole</u>

PN	Length (m)	-		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F4.001	22.624	200.0	F17	32.800	30.080	2.495	Open Manhole	1200
F1.007	64.312	200.0	F20	31.800	29.758	1.817	Open Manhole	1200
	38.594 38.594			31.950 31.800			Open Manhole Open Manhole	
F1.008	60.987	60.0	F25	30.450	28.251	1.974	Open Manhole	1200
F7.000	47.382	60.0	F24	30.450	27.860	2.440	Open Manhole	1200
	37.977 18.604						Open Manhole Open Manhole	
F7.001	14.100	150.0	F25	30.450	27.484	2.816	Open Manhole	1200
	20.356 63.099				27.307 25.204		Open Manhole Open Manhole	
F9.000	86.330	150.0	F28	27.550	24.674	2.651	Open Manhole	1200
				©1982-	-2018 I	nnovyze		

Waterman Moylan		Page 15
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	·

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
		(\ /	ν/	ν/		(,
F1.011	0	225	F28	27.550	24.674	2.651	Open Manhole	1200
F10.000	0	150	F29	25.150	24.100	0.900	Open Manhole	1200
F10.001	0	225	F30	24.850	23.685	0.940	Open Manhole	1200
F1.012	0	225	F31	25.850	23.346	2.279	Open Manhole	1200
F11.000	0	150	F32	24.900	23.400	1.350	Open Manhole	1200
F11.001	0	225	F33	24.650	22.972	1.453	Open Manhole	1200
F12.000	0	150	F34	25.750	24.400	1.200	Open Manhole	1200
F11.002	0	225	F35	25.400	22.650	2.525	Open Manhole	1200
F1.013	0	225	F36	25.100	21.926	2.949	Open Manhole	1200
F1.014	0	225	F37	24.200	21.569		Open Manhole	
F1.015	0	225	F38	23.500	20.873		Open Manhole	
F13.000		150	F39	31.700			Open Manhole	
F13.001	0	225	F40	31.350	29.027	2.098	Open Manhole	1200

Downstream Manhole

PN	-	-		C.Level (m)		-	MH Connection	MH DIAM., L*W (mm)
	\ /	_ /		\ /	ν/	ν/		ζ,
F1.011	62.612	60.0	F31	25.850	23.631	1.994	Open Manhole	1200
							Open Manhole Open Manhole	
							Open Manhole	
							Open Manhole Open Manhole	
F12.000							Open Manhole	
F11.002	43.442	60.0	F36	25.100	21.926	2.949	Open Manhole	1200
							Open Manhole	
				22.400			Open Manhole Open Manhole	
							Open Manhole Open Manhole	
				©1982-	2018 Ir	novyze		

Waterman Moylan		Page 16
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	1

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
F13.002	0	225	F41	30.900	28.652	2.024	Open Manhole	1200
F13.003	0	225	F42	27.900	26.123	1.552	Open Manhole	1200
F14.000	0	150	F43	25.450	24.100	1.200	Open Manhole	1200
F15.000	0	150	F44	25.800	24.400	1.250	Open Manhole	1200
F13.004	0	225	F45	25.100	22.744	2.131	Open Manhole	1200
F13.005	0	225	F46	24.400	22.274	1.901	Open Manhole	1200
F16.000	0	150	F47	24.300	22.900	1.250	Open Manhole	1200
F13.006	0	225	F48	24.200	22.202	1.773	Open Manhole	1200
F13.007	0	225	F49	23.250	20.829	2.196	Open Manhole	1200
F1.016	0	225	F50	22.400	20.128	2.047	Open Manhole	1200
F1.017	0	225	F51	20.200	18.206	1.769	Open Manhole	1200
F1.018	0	225	F52	18.750	16.849	1.676	Open Manhole	1200
F1.019	0	225	F53	19.500	16.696	2.579	Open Manhole	1200
F17.000	0	150	F54	34.300	32.900	1.250	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length (m)	-				-	MH Connection	•
F13.002	88.570	35.0	F42	27.900	26.123	1.552	Open Manho	ole 1200
F13.003	50.417	20.0	F45	25.100	23.602	1.273	Open Manho	ole 1200
F14.000	48.382	60.0	F45	25.100	23.294	1.656	Open Manho	ole 1200
F15.000	63.235	40.0	F45	25.100	22.819	2.131	Open Manho	ole 1200
F13.004	70.576	150.0	F46	24.400	22.274	1.901	Open Manho	ole 1200
F13.005	10.683	150.0	F48	24.200	22.202	1.773	Open Manho	ole 1200
F16.000	19.839	60.0	F48	24.200	22.569	1.481	Open Manho	ole 1200
F13.006	34.337	25.0	F49	23.250	20.829	2.196	Open Manho	ole 1200
F13.007	23.143	33.0	F50	22.400	20.128	2.047	Open Manho	ole 1200
F1.016	71.117	37.0	F51	20.200	18.206	1.769	Open Manho	ole 1200
F1.017	50.198	37.0	F52	18.750	16.849	1.676	Open Manho	ole 1200
F1.018	6.120	40.0	F53	19.500	16.696	2.579	Open Manho	ole 1200
F1.019	7.616	200.0	F100	19.500	16.658	2.617	Open Manho	ole 1200
F17.000	47.776	35.0	F55	33.650	31.537	1.963	Open Manho	ole 1200
				©1982-	·2018 Ir	novyze		

Waterman Moylan		Page 17
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	niairiade
Micro Drainage	Network 2018.1.1	1

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
F17.001	0	150	F55	33.650	31.537	1 963	Open Manhole	1200
F17.001	_	150	F56	32.950	31.139		-	
	0						Open Manhole	
F17.003	0	150	F57	32.800	31.065	1.585	Open Manhole	1200
F17.004	0	225	F58	32.750	30.797	1.728	Open Manhole	1200
F17.005	0	225	F59	32.110	30.481	1.404	Open Manhole	1200
F17.006	0	225	F60	31.900	30.277	1.398	Open Manhole	1200
F18.000	0	150	F61	33.230	31.600	1.480	Open Manhole	1200
F19.000	0	150	F62	33.500	32.075	1.275	Open Manhole	1200
F18.001	0	225	F63	32.850	30.693	1.932	Open Manhole	1200
F17.007	0	225	F64	31.450	28.951	2.274	Open Manhole	1200
F20.000	0	150	F65	32.870	31.520	1.200	Open Manhole	1200
F20.001	0	150	F66	31.850	30.309		Open Manhole	
120.001	O	150	100	31.030	30.303	1.331	open mannore	1200
F17.008	0	225	F67	31.150	28.756	2.169	Open Manhole	1200
F17.009	0	225	F68	30.700	28.429		Open Manhole	
							-	
F17.010	0	225	F69	30.610	28.261	2.124	Open Manhole	1200

<u>Downstream Manhole</u>

PN Length Slope MH C.Level I.Level D.Depth MH MH I	DIAM., L*W
(m) $(1:X)$ Name (m) (m) (m) Connection	(mm)
F17.001 59.680 150.0 F56 32.950 31.139 1.661 Open Manhole	1200
F17.002 11.074 150.0 F57 32.800 31.065 1.585 Open Manhole	1200
F17.003 28.947 150.0 F58 32.750 30.872 1.728 Open Manhole	1200
F17.004 63.240 200.0 F59 32.110 30.481 1.404 Open Manhole	1200
F17.005 12.223 60.0 F60 31.900 30.277 1.398 Open Manhole	1200
F17.006 16.572 60.0 F64 31.450 30.001 1.224 Open Manhole	1200
F18.000 49.909 60.0 F63 32.850 30.768 1.932 Open Manhole	1200
	1000
F19.000 87.942 100.0 F63 32.850 31.196 1.504 Open Manhole	1200
F18.001 69.695 40.0 F64 31.450 28.951 2.274 Open Manhole	1200
110.001 03.033 40.0 F04 31.430 20.331 2.274 Open Mannote	1200
F17.007 38.903 200.0 F67 31.150 28.756 2.169 Open Manhole	1200
•	
F20.000 72.639 60.0 F66 31.850 30.309 1.391 Open Manhole	1200
F20.001 44.595 80.0 F67 31.150 29.752 1.248 Open Manhole	1200
F17.008 65.407 200.0 F68 30.700 28.429 2.046 Open Manhole	1200
F17.009 33.602 200.0 F69 30.610 28.261 2.124 Open Manhole	1200
F17.010 84.705 25.0 F70 26.320 24.873 1.222 Open Manhole	1200
©1982-2018 Innovyze	

Waterman Moylan		Page 18
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
F17.011	0	225	F70	26.320	24.873	1.222	Open Manhole	1200
F21.000	0	150	F71	31.800	30.300	1.350	Open Manhole	1200
F21.001	0	150	F72	29.850	28.487	1.213	Open Manhole	1200
F21.002	0	225	F73	29.000	27.311	1.464	Open Manhole	1200
F21.003	0	225	F74	27.150	25.708	1.217	Open Manhole	1200
F22.000	0	150	F75	29.400	28.000	1.250	Open Manhole	1200
F23.000	0	150	F76	30.200	28.800	1.250	Open Manhole	1200
F23.001	0	150	F77	30.050	28.521	1.379	Open Manhole	1200
F24.000	0	150	F78	29.500	28.400	0.950	Open Manhole	1200
F23.002	0	150	F79	29.900	27.960	1.790	Open Manhole	1200
F23.003	0	150	F80	29.850	27.880		Open Manhole	
F22.001	0	225	F81	29.870	27.469	2.176	Open Manhole	1200
F21.004	0	225	F82	29.150	25.561	3.364	Open Manhole	1200
F21.005	0	225	F83	27.800	25.256	2.319	Open Manhole	1200

Downstream Manhole

PN	Length (m)	-		C.Level (m)		-	MH Connection	MH DIAM., L*W (mm)
F17.011	15.551	25.0	F87	26.000	24.251	1.524	Open Manhole	1200
F21.000 F21.001 F21.002	27.520 56.087	25.0 35.0	F74	29.000 27.150	25.708	1.464 1.217	Open Manhole Open Manhole Open Manhole	1200 1200
F21.003				29.150			Open Manhole Open Manhole	
F23.000 F23.001				30.050 29.900			Open Manhole Open Manhole	
F24.000 F23.002				29.900			Open Manhole Open Manhole	
F23.003	50.416	150.0	F81	29.870	27.544	2.176	Open Manhole	1200
F22.001				29.150			Open Manhole Open Manhole	
F21.004				28.150	25.076	2.849	Open Manhole	
				©1982-	·2018 Ir	nnovyze		

Waterman Moylan		Page 19
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	praniacie
Micro Drainage	Network 2018.1.1	

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
F21.006	0	225	F84	28.150	25.076	2 8/19	Open Manhole	1200
F21.000	0	225		28.350			Open Manhole	
							-	
F21.008	0	225	F86	27.150	24.440	2.485	Open Manhole	1200
F17.012	0	225	F87	26.000	23.998	1.777	Open Manhole	1200
F17.013	0	225	F88	25.000	23.253	1.522	Open Manhole	1200
F17.014	0	225	F89	23.500	21.698	1.577	Open Manhole	1200
F17.015	0	225	F90	23.000	21.176		Open Manhole	
F17.016	0	225	F91	21.900	20.043	1.632	Open Manhole	1200
							-	
F25.000	0	150	F92	24.840	23.300	1.390	Open Manhole	1200
F25.001	0	150	F93	23.900	22.315	1.435	Open Manhole	1200
F25.002	0	150	F94	22.950	21.330	1.470	Open Manhole	1200
F25.003	0	150	F95	22.350	20.946	1.254	Open Manhole	1200
F25.004	0	225	F96	21.000	19.589	1.186	Open Manhole	1200
F25.005	0	225	F97	22.800	19.251	3.324	Open Manhole	1200
F17.017	0	225	F98	21.000	18.869	1.906	Open Manhole	1200
F17.018	0	225	F99	20.500	18.448	1.827	Open Manhole	1200
F1.020	0	225	F100	19.500	16.658	2.617	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
F21.006	54.116	200.0	F85	28.350	24.805	3.320	Open Manhole	1200
F21.007	54.810	150.0	F86	27.150	24.440	2.485	Open Manhole	1200
F21.008	26.523	60.0	F87	26.000	23.998	1.777	Open Manhole	1200
F17.012	44.720	60.0	F88	25.000	23.253	1.522	Open Manhole	1200
F17.013	62.197	40.0	F89	23.500	21.698	1.577	Open Manhole	1200
F17.014	15.662	30.0	F90	23.000	21.176	1.599	Open Manhole	1200
F17.015	33.996	30.0	F91	21.900	20.043	1.632	Open Manhole	1200
F17.016	25.899	30.0	F98	21.000	19.179	1.596	Open Manhole	1200
F25.000	59.120	60.0	F93	23.900	22.315	1.435	Open Manhole	1200
F25.001				22.950	21.330		Open Manhole	
F25.002				22.350			Open Manhole	
F25.003	44.857	35.0	F96	21.000	19.664		Open Manhole	
F25.004	67.734	200.0	F97	22.800	19.251		Open Manhole	
F25.005	76.352	200.0	F98	21.000	18.869	1.906	Open Manhole	1200
F17.017	10.116	24.0	F99	20.500	18.448	1.827	Open Manhole	1200
F17.018			F100				Open Manhole	
							.,	_200
F1.020	7.908	100.0	F	18.500	16.579	1.696	Open Manhole	0
				©1982-	·2018 Tr	novvze		

D. Site Investigation

PRELIMINARY DRAFT REPORT

RATHMULLAN DROGHEDA PROPOSED HOUSING CLARD DEVELOPMENTS

WATERMAN MOYLAN CONSULTING ENGINEERS

CONTENTS

I	INTRODUCTION
II	FIELDWORK
III	TESTING
IV	DISCUSSION

APPENDICES

I	BOREHOLE LOGS
II	TRIAL PIT RECORDS
III	DYNAMIC PROBES
IV	BRE DIGEST 365 TESTS
\mathbf{V}	LABORATORY DATA
VI	SITE PLAN AND SECTION

FOREWORD

The following Conditions and Notes on Site Investigation Procedures should be read in conjunction with this report.

General.

Recommendations made, and opinions expressed in the report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held for conditions which have not been revealed by exploratory work, or which occur between exploratory hole locations. Whilst the report may suggest the likely configuration of strata, both between exploratory hole locations, or below the maximum depth of the investigation, this is only indicative, and liability cannot be accepted for its accuracy.

Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

Boring Procedures.

Unless otherwise stated, the 'Shell and Auger' technique of soft ground boring has been employed. All boring operations sampling and/or logging of soils and in-situ testing complies with the recommendations of the British Standard Code of Practice BS 5930 (1981), 'Site Investigation' and BS 1377:1990, 'Methods of test for soils for civil engineering purposes'.

Whilst the technique allows the maximum data to be obtained in soft ground, some disturbance and variation of soft and layered soils is unavoidable. Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

Where peat has been encountered during siteworks, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 & Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986).

Routine Sampling.

Undisturbed samples of soils, predominantly cohesive in nature are obtained unless otherwise stated by a 104mm diameter open-drive tube sampler. In granular soils, and where undisturbed sampling is inappropriate, disturbed samples are collected. Smaller disturbed samples are also recovered at intervals to allow a visual examination of the full strata section.

In-Situ Testing.

Standard penetration tests, utilising either the standard split spoon sampler or solid cone and automatic trip-hammer are conducted unless otherwise where required by instruction. Subsequent to a seating drive of 150mm, a summation for the number of blows for 300mm penetration is recorded on the boring records together with the blow count for each 75mm penetration. In cases where incomplete penetration is obtained, the number of blows for the recorded value of penetration are noted. In coarse granular soils, a cone end is fitted to the sampler and a similar procedure adopted.

Groundwater.

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level.

Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage condition, tidal variation or other causes.

Retention of Samples.

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material is discarded unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

REPORT ON A SITE INVESTIGATION FOR A HOUSING DEVELOPMENT AT WEST DROGHEDA COUNTY MEATH

FOR CLARD DEVELOPMENTS LTD

WATERMAN MOYLAN CONSULTING ENGINEERS

Report No. 21345

NOVEMBER 2018

I Introduction

A new housing development is proposed for a greenfield site located at Rathmullan, Drogheda West.

An investigation of sub soil conditions in the area of development has been ordered by Waterman Moylan, Consulting Engineers on behalf of Clard Developments Ltd.

The programme of the investigation included the construction of Boreholes, Trial Pits and Dynamic Probes to establish criteria on which to base foundation and infrastructural design. Work was carried out in accordance with BS 5930, Code of Practice for Site Investigations (1999).

In addition percolation testing to BRE Digest 365 was scheduled and carried out at several locations to establish soil percolation characteristics.

A programme of laboratory testing to confirm geotechnical and environmental soil parameters followed site operations.

This report includes all factual data pertaining to the project and comments on the findings relative to the new development.

II Fieldwork

The proposed development is to be undertaken on existing farm land located at Rathmullan, Drogheda West. The development area is bounded by the M1 Motorway to the West, The River Boyne to the North and The Riverbank Housing Estate to the East. The location is shown on the site map in Appendix VI. This drawing also shows the location of the various exploratory positions.

The field investigation included the following elements.

- Cable Percussion Boreholes at five locations
- Machine Excavated Trial Pits at five locations
- · HD Dynamic Probes at five locations
- BRE Digest 365 Percolation Tests at five locations

The various locations have been referenced to national grid and OD levels established. Photographs of all excavations are included with this report in the relevant appendices.

Boreholes

Five exploratory holes were scheduled and bored with conventional 200mm cable-tool methods using a Dando Exploratory Rig. Each location was electronically scanned and shallow trial pits were opened to ensure that existing services were not damaged. One additional hole (BH02A) was bored when shallow refusal was recorded in the original location.

Detailed geotechnical records are contained in Appendix I to this report - the records give details of stratification, sampling, in-situ testing and groundwater. Note is also taken of any obstructions to normal boring requiring the use of the heavy chisel for advancement. In general it was not possible to recover undisturbed samples because of the high stone/cobble content of the strata encountered.

The boreholes consistently identified surface topsoil (300mm) overlying initially firm brown sandy gravelly CLAY. The gravelly CLAY stratum increases in strength to stiff and very stiff below about 1.20 metres with holes continuing to completion at depths between 5.80 and 8.50 metres. Angular and sub-angular cobbles and boulders were noted at varying depths in each borehole. The soils represent GLACIAL TILL or BOULDER CLAY deposition, typical of the region.

The final refusal depths may be indicative of boulders in the glacial clay or possibly the local bedrock horizon. Proof core drilling would be required to confirm the presence of bedrock in the area.

No water was encountered during the course of boring. Long-term ground water observation was not required.

Trial Pits

A JCB excavator was used under geotechnical engineering supervision to open trial pits at five locations.

Detailed trial pit records are presented in Appendix II. These records note stratification and ground water regime and detail sampling, obstructions and excavation stability. Photographs of each location are also included with the records.

The records confirm the borehole findings with topsoil overlying firm to stiff brown very sandy gravelly CLAY, typically containing cobble and boulder fragments. Difficulty in advancing the trial pits was noted in each location. Three pits were terminated on boulder obstructions between 1.50 and 2.00 metres BGL however TP01 continued to 2.60 metres and TP03 to 3.00 metres.

Ground water was not encountered during excavation of the trial pits. The pits were backfilled and compacted with the excavated spoil.

Dynamic Probes

Heavy Duty Probes were taken at a total of five locations each adjacent to an excavated trial pit and referenced DP01 to DP05.

Probing was in accordance with the heavy-duty probe specification of BS 1377: Part 9: 1990. In these tests, the soil resistance is measured in terms of the number of drop-hammer blows required to drive the test probe through each 100 mm increment of penetration. Probing is terminated when the blow count exceeds 25/100mm to avoid damage to the apparatus. Where loose material is present a single blow count may drive the apparatus in excess of 100mm. In this instance blow counts of zero may be recorded. Individual probe records are contained in Appendix III.

The probe graphs generally reflect a pattern of gradually increasing soil strength with penetration depth with probe refusals generally occurring between 1.20 and 3.00 metres. Isolate thin soft zones (100mm to 200mm thick) were noted at 1.70 metres BGL in DP01 and DP02.

A probe resistance of N100 = 4 with no significant underlying deterioration is indicative of an allowable bearing pressure of 100 Kpa, suitable for traditional two storey house construction.

Probe No.	Depth to $N_{100} = 5$	Refusal				
DP01	0.50	2.50				
DP02	1.80	3.10				
DP03	0.50	1.20				
DP04	0.50	1.50				
DP05	0.50	1.10				

Percolation Test to BRE Digest 365

Infiltration testing was performed at five locations in accordance with BRE Digest 365 'Soakaway Design'. The test pit was excavated and logged. The test material was firm to stiff brown very sandy gravelly CLAY with cobbles and boulders

To obtain a measure of the infiltration rate of the sub-soils, water is poured into the test pit, and records taken of the fall in water level against time. The test is carried out over two cycles following initial soakage.

The infiltration rate is the volume of water dispersed per unit exposed area per unit of time, and is generally expressed as metres/minute or metres/second. In these calculations the exposed area is the sum of the base area and the average internal area of the permeable stratum over the test duration. Designs are based on the slowest infiltration rate, which has been calculated from the final cycle.

In the test locations the water level dropped slowly over the test period. The design calculations are presented in Appendix IV, with the infiltration rates as follows:

SA 01	Infiltration Rate (f)	0.00057 m/min
SA02	Infiltration Rate (f)	0.00068 m/min
SA03	Infiltration Rate (f)	0.00029 m/min
SA04	Infiltration Rate (f)	0.00052 m/min
SA05	Infiltration Rate (f)	0.00051 m/min

The results are typical of low-permeability glacial till deposition.

III Testing

a. In-Situ

Standard penetration tests were carried out in each borehole at 1.00 metre intervals to establish relative soil strength. Results are presented in the right hand column of the boring records and are summarised as follows:

Stratum	N Value Range	Comment
Brown sandy gravelly CL.	AY	
1.00 metres BGL	10 to 18	Firm to Stiff
2.00 metres BGL	16 to 30	Stiff
3.00 metres BGL	25 to 33	Stiff to Very Stiff
4.00 metres BGL	31 to 51	Very Stiff to Hard
5.00 metres BGL	23 to 53	Stiff to Hard

b. Laboratory

All geotechnical samples from the boreholes and trial pits have been returned to the IGSL laboratory for initial visual inspection, a schedule of testing was prepared and tests carried out.

The programme of testing included the following elements and all results are presented in Appendix V. Standard geotechnical testing is carried out by IGSL in it's INAB-accredited laboratory. Chemical and environmental testing was carried out by CHEMTEST in the UK.

- a. Classification (Liquid and Plastic Limits)
- b. Particle size distribution (Sieve Analysis and Hydrometer)
- c. Sulphate and pH determination
- d. RILTA Environmental Suite

Classification and Moisture Content

Liquid and plastic limits were determined for samples of the cohesive soils from the trial pits and boreholes. Results are detailed and plotted on the standard Casagrande Classification Chart.

Particle Size Distribution

Grading curves for selected samples of the gravelly clay stratum from the boreholes were determined by wet sieve and hydrometer analysis.

Chemical (pH and Sulphate)

Four samples were submitted for chemical analysis.

RILTA Environmental Suite

Five sample were submitted for RILTA Suite (WAC) analysis.

IV Discussion

The proposed new housing development is to be undertaken on agricultural land at Rathmullan in Drogheda North.

A comprehensive investigation of sub soil conditions has been carried out for Waterman Moylan on behalf of Clard Developments Ltd.

This preliminary report is based on field findings, detailed geotechnical and environmental testing is being carried out to confirm design parameters.

The detailed findings are presented earlier in this report and these can be summarised as follows:

Boreholes indicate topsoil overlying firm brown sandy gravelly CLAY which extends to about 1.20 metres BGL. This overlies stiff to very stiff to hard brown gravelly CLAY (Brown Boulder CLAY). Boreholes were completed on refusal at depths between 5.80 and 8.50 metres. The final borehole depths are not indicative of rock horizon. No ground water was encountered.

Trial Pits confirmed this general pattern, with numerous cobble and boulder particles noted and recovered and excavation difficulty noted in several locations.

NEW HOUSE FOUNDATIONS

Standard Penetration Tests and Dynamic Probes indicate that an allowable bearing pressure of at least 125 kN/sq.m. can be taken at a depth of 1.00 metre BGL. Conventional reinforced strip or pad foundations will therefore be appropriate for this development with foundations placed 0.70 to 0.80 metres BGL.

At one probe location (DP02) a reduction in soil strength was noted between 1.60 and 1.80 metres. The overlying soils are stiff and consideration could be given to founding at 0.70 metres with a reduced bearing pressure of 75 kN/sq.m. to avoid overstressing the weaker underlying zone.

Alternatively foundations in this area could be deepened to 1.80 metres to achieve the higher allowable bearing pressure.

The sub soils increase in strength with depth and results indicate an allowable bearing pressure of 250 kN/sq.m. on the soils below 2.00 metres.

Careful visual inspection of foundation excavations is advised to ensure uniformity and suitability of the founding medium. This is particularly relevant given the variation noted at DP02.

PERCOLATION

Testing to BRE Digest 365 was carried out at five location with relatively low infiltration available in the gravelly boulder clay formation. An average infiltration rate (f) of 0.00050 metres/minute has been obtained.

ENVIRONMENTAL

CONCRETE

<u>IGSL/JC</u> November 2018

GEOTECHNICAL BORING RECORD

REPORT NUMBER

1	g J L	4				·									21345	
CO	NTRAC	T Ra	athmu	llen,Dro	ogheda,Co	.Louth							BOREHO SHEET	LE NO	BH01 Sheet 1 of 1	
	ORDIN	IATES LEVEL (m AO	D)				E OLE DIAME OLE DEPTI		nm)	Dando 20 200 4.20	000	DATE COMMENCED 02/11/2018 DATE COMPLETED 05/11/2018			
CLI	ENT SINEER			an Moyla	an		SPT HAMMER REF. NO. ENERGY RATIO (%)					BORED			W.Cahill Y F.C	
٦										2		San	ples			a)
Depth (m)		Description						Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
0	TOPSOIL/subsoil .									0.30						
- 1	Firm I	ight bro ecasion	wn sa al cob	ndy SIL bles	T/CLAY w	ith some ç	gravel			1.80	AA11709	8	1.00		N = 10 (2, 2, 3, 3, 2, 2)	
2	Stiff to very stiff dark brown sandy SILT/CLAY with grvael and occasional cobbles and boulders										AA11710	8	2.00		N = 21 (4, 4, 5, 5, 5, 6)	
3								₩ 20-3			AA11711	8	3.00		N = 33 (5, 5, 7, 9, 7, 10)	
4		uction						0	***********	4.20	AA11712	В	4.00		N = 48/75 mm (15, 10, 48)	
5	E.IG	of Boreh	ore ur	3.20 111												
6															Annual Property Community	
								The state of the s								
8																
9																ANTENNA PROPERTY AND THE PROPERTY AND TH
HA	RD ST	RATA B			ELLING							<u>.</u>			ATER STRIKE DET	AILS
Fror	n (m)	To (m)	Tin (h) (omments			Wate Strike		asing epth	Sealed At	Rís To		me nin)	Comments	
	4	4.2	2											***************************************	No water strike	
										Wala	Casin-	T n		GR	OUNDWATER PRO	GRESS
	TALLA Date	Tin De			RZ Base	Tues	ne	Date	9	Hole Depth	Casing Depth	De	oth to later	Comme	ents	
						Typ		it corried -		100-	nlo l ozaz					
KE	YMP(N)	o carso	ai i 1186	u iocalić	on and har	iu uug ins	pecaon p	oit carried o	out.	1 LU - Lai	ple Legen III Disturbed (tub Disturbed ge Bulk Disturbe nvironmental Sa	÷0	+ Vial + Tub)	Sam; P⊸U	Undisturbed 100mm Diameter ple indisturbed Piston Sample Water Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

21345

]	[337]	4													210-10	
co	NTRAC	T Ra	thm	ullen,Dro	gheda,Co	.Louth					<u></u>		BOREH	OLE NO	D. BH01A	
	-ORDIN	ATEC				RIG TY	pr	PE Dando 2000					SHEET Sheet 1 of 1			••••
ļ		LEVEL (1	m A(OD)		BORE	OLE DIAMETER (mm) 200 IOLE DEPTH (m) 6.20						DATE COMMENCED 02/11/2018 DATE COMPLETED 05/11/2018			
CL	IENT					SPT HA	SPT HAMMER REF. NO.							ву	W.Cahill	
EN	GINEER	Wa	atern	nan Moyla	an	ENERG	Y RATIO ((%)				1	PROCE	SSED B	F.C	·
Ê									اء	Ê		,	nples	7		e e
Depth (m)				Desc	ription		Legend		Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
De									ᆲ	å	용골	Sar	ಕಿ	Rec		Sg
0		OIL/sub					578 778	1		0.30			-			
Ė		ght brow ccasiona			I/CLAY WI	th some gravel	8	7								
<u>-</u> 1							\$	7			AA10561	В	1.00		N = 11	
Ē '								9							(2, 3, 2, 3, 3, 3)	
ļ							<u>× -0</u>	(1		1.80						
F 2	Stiff to	very sti	iff da casi	ark brown	n sandy SI bles and b	LT/CLAY with oulders	8 0	-			AA10562	В	2.00		N = 21 (4, 6, 4, 6, 5, 6)	
Ē	3,,,,,,			500	_,,	- ··· - · · ·	# X	<u>-</u>	-						(-, -, -, -, -, -, -, -, -, -, -, -, -, -	
								-							1	
-3							×72	3			AA10563	В	3.00		N ≠ 31 (5, 4, 5, 6, 9, 11)	
								-		3.60						
Ē		e grey/br				ey GRAVEL with	0.00	9							., .,	
4		stiff dark					× ×	1_	-	4.20	AA10564	В	4.00		N = 42 (6, 6, 9, 9, 10, 14)	
Ė	-				ravelly SI	LT/CLAY with	-86	-		4.50	-					
<u> </u>	cobbb	les and	occa	asional b	oulders		<i>⊕</i> *	1			AA10565	В	5.00		N = 41	
- 5 -							2	4			74110000				(5, 7, 9, 9, 11, 12)	
-							⊕X 	-							days	
-6							2	-		6.20	AA10566	8	6.00		N = 50/75 mm (7, 18, 50)	
Ē		uction of Boreho	olo a	t 6 20 m				1		0.000					(17 10.00)	
Ē	Endo	n Doreit	JIC a	11 0.20 11												
£ 7																
Ė																
-																
-8																
-																
9															La sur la companya de	
5																
Ė																
H	ARD ST	RATA B	ORIN	VG/CHIS	ELLING							<u> </u>	<u> </u>	v	VATER STRIKE DET	TAILS
		To (m)	Ti	ma	mments		Wa Stri		Cas		Sealed At	Ris To		ime min)	Comments	
-	3.5	3.7	0.	.75					_ 	×111	, 1L				No water strike	
	6	6.2		2											white	
						-							Ci	ROUNDWATER PRO	OGRESS	
INS	STALLA	TION DE	ETAI	 L\$			Da	ate		Hole	Casing	De	epth to Vater	Comm		
INS	Date Tip Depth RZ Top RZ Base Type								 L	epth	Depth	V	प्रवास			
RE	MARKS	Cat sc	anne	ed location	on and har	nd dug inspection	pit carried	l out.	•	Samp D - Small	le Legen Disturbed (tub	id)			- Undisturbed 100mm Diameter	
										B - Bulk C LB - Larg	Disturbed e Bulk Disturbe vironmental Sar	ed	+ Vial + Tub)	Sam P-1 W-	npte Undisturbed Piston Sample Water Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

1997													21345				
CONTRACT Rathmullen, Drogheda, Co. Louth													OLE N		D. BH02 Sheet 1 of 1		
						E Dando 2000 DE DIAMETER (mm) 200 DE DEPTH (m) 6.50				000	SHEET DATE C DATE C		ICED 06/11/2018				
CLIENT SPT HAN						IMER REF. NO. RATIO (%)					BORED PROCES			W.Cahill Y F.C			
T	******			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					1		Sam						
Ceptin (int)		Description						Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Res	Test sults	Standpipe Details	
1 🔍	OPSOIL						******		0.15	7							
F	irm to	ubsoil rm to stiff light brown sandy SILT/CLAY with gravel and occasional cobbles						·····	0.35								
1	nd booddinial dobbles									AA105601	8	1.00			N = 18 (2, 3, 3, 4, 6, 5)		
2								A CANADA	A THE PROPERTY OF THE PROPERTY	AA105602	В	2.00			= 16 4, 4, 4, 4)		
3 9	Very stiff to hard light brown sandy SILT/CLAY with gravel,cobbles and some boulders						x - X		2.90	AA105603	В	3.00	**************************************	(5, 6, 6			
1										AA105604	В	4.00			i = 51 . 13, 14, 13}		
5							20 X			AA105605	В	5,00			i = 53 10, 9, 19, 15)		
6	Shetru	ection							6.50	AA105606	В	6.00		N = 5 (2	60/75 mm (5, 50)		
Obstruction End of Borehole at 6.50 m																	
8																	
9									Assertation			-					
													·				
HAR	D STF	RATA BOF		SELLING										WATER ST	RIKE DET	AILS	
4.2 5.4 6.3		To (m) Time Com		Comments	mments		Wate Strik		asing lepth	Sealed At	Rise To		Time min)	Comment	Comments		
		4.5 5.6 6.5	6 1											No wate	No water strike		
								<u> </u>				<u> </u>		GROUNDWATER PROGRESS			
INSTALLATION DETAILS						Dat	Date Hole		Casing Depth			Comments					
Date		Tip Depth RZ Top		o RZ Base	RZ Base Type				Depth	Debiu	spiii vva(ei						
REMA	ARKS	Cat scan	ned loca	tion and ha	l nd dug ins	pection p	it carried	out.	B - Bulk	ple Leger If Disturbed (tub Disturbed ge Bulk Disturbe	ed		Şa P.	- Undisturbed 10 mple Undisturbed Pisto			
									Env - Er	ye bulk Distore ivironmental Sa	mple (Jar	+ Vial + Tub)	w	- Water Sample			

GEOTECHNICAL BORING RECORD

REPORT NUMBER

Sheet 1 of 1 Co-Ordinates British brown sandy Sil.Tr/CLAY with gravel and some cobbles and boulders Sheet 1 of 1 Co-Ordinates Sheet 1 of 1 Co-Ordinates Co-					~~~~			-					·				O. C	<u>_</u>	Dilos	
CO-ORDINATES SORGHOLD DIAMETER (rmm) 7,50 Date COMMISSION	COI	NTRAC	T Ra	thmuli	en,Dro	gheda	,Co.l	outh.	-								ULE N	U.	BH03 Sheet 1 of 1	
PROCESSED BY F.C. Description				n AOD)				BOREH	OLE DIAM		mm)	2	00					ED 12/11/2018	
Description Descr			Wa	itermar	Movi	an			i						- 1			BY		
1	П										T	<u> </u>		<u> </u>						
1	Depth (m)				Desc	ription				Legend	Towation	Depth (m)		Ref. Number	Sample Type	Depth (m)	Recovery	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Standpipe Details
Autos22 B 1.00 N = 15 (7, 2, 3, 3, 7)	0	TOPS	OIL/sub	soil								0.2	20				- <u></u>			
Silf light brown sandy SILT/CLAY with gravel and some cobbles and boulders Very stiff light brown sandy SILT/CLAY with gravel and some cobbles and boulders Very stiff light brown sandy SILT/CLAY with gravel and some cobbles and boulders AA105622 B 3.00 N = 36 (4, 5, 6, 6, 9, 11) AA105623 B 4.00 N = 20 (2, 3, 4, 5, 6, 7) AA105628 B 5.00 N = 20 (4, 4, 4, 6, 7) AA105628 B 5.00 N = 20 (6, 4, 4, 6, 6, 7) AA105628 B 5.00 N = 20 (6, 4, 4, 6, 6, 7) AA105628 B 7.00 N = 20 (6, 4, 4, 6, 6, 7) AA105628 B 7.00 N = 20 (6, 6, 7, 7, 6, 8) AA105628 B 7.00 N =	1	Firm o	iark brov ccasiona	vn san Il cobb	dy SIL les	T/CLA	Y wit	h some	gravel			1.6	3 0	AA105620	8	1.00				!
Very stiff fight brown sandy SiLT/CLAY with gravel and some cobbles and boulders	2	Stiff li some	ght brow cobbles	n sand and be	ly SIL oulder	T/CLA`	Y with	gravel	and					AA105621	В	2.00				
AA105624 B 5.00 (7, 9, 12, 11, 12, 15) AA105625 B 6.00 (8, 4, 4, 6, 6, 7) AA105625 B 6.00 (8, 4, 4, 6, 6, 7) AA105626 B 7.00 (8, 14, 16, 34) AA105628 B 7.00 (8, 14, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16	3	Very s	stiff light ome cob	brown bles a	sandy nd boi	/ SILT/ ulders	CLAY	/ with g	ravel	×0 = 0 0 × 80 ≠		3.2	20_	AA105622	В	3,00				
AA105625 B 6.00 N = 30	4													AA105623	В	4,00			N = 50 (7, 9, 12, 11, 12, 15)	
Obstruction End of Borehole at 7.50 m HARD STRATA BORING/CHISELLING Tom (m) To (m) Time (h) Comments 4.3 4.5 0.75 2 No water strike Water Casing Sealed Rise Tom (min) Comments No water strike GROUNDWATER PROGRES No water strike GROUNDWATER PROGRES No water strike Sample Legend On the Sample	5											THE STATE OF THE S		AA105624	8	5.00				
Obstruction End of Borehole at 7.50 m HARD STRATA BORING/CHISELLING Tom (m) To (m) Time (h) Comments 4.3 4.5 0.75 7.5 2 NSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type REMARKS Cat scanned location and hand dug inspection pit carried out. REMARKS Cat scanned location and hand dug inspection pit carried out. Sample Legend Depth Sample Legend Sample Legend Depth Sample Legend Depth Sample Legend Sample Legend Sample Legend Depth Sample Legend Sample Legend Sample Legend Sample Legend Depth Sample Legend Sample Legend Sample Legend Depth Sample Legend Depth Sample Legend Depth Sample Depth	6													AA105625	B	6.00		;	N = 30 (5, 6, 7, 7, 8, 8)	
End of Borehole at 7.50 m HARD STRATA BORING/CHISELLING From (m) To (m) Time (h) Comments 4.3	7	Obstr	uction							0 7 7 8	- Comments of the Comments of	7.5	60_	AA105626	В	7.00				
From (m) To (m) Time (h) Comments Water Strike Depth At To To Comments 4.3	8			ie at 7	.50 m															
At To (min) Comments 4.3	HA	1	1			ELLIN	3			Mate	ar T C	acina	1 6	Spalpd T	Dic	٦ ٦		1		AILS
7.2 7.5 2 INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type REMARKS Cat scanned location and hand dug inspection pit carried out. Sample Legend Depth Sample Studied (tub) Sample Legend Depth Sample Studied (tub) Sample Sample Studied (tub) Sample Sample Studied (tub) Sample Sample Studied (tub) Sample Sample Sample Studied (tub) Sample Sam				(h)		ommer	nts				e E		+	1						
INSTALLATION DETAILS Date Hole Depth Casing Depth to Water Comments Date Tip Depth RZ Top RZ Base Type REMARKS Cat scanned location and hand dug inspection pit carried out. Sample Legend UT - Undisturbed 100mm Diameter Sample														- The second sec		e e e e e e e e e e e e e e e e e e e			vo water strike	
Date Tip Depth RZ Top RZ Base Type Depth Depth Water Continents Depth Water Continents															·		G	RO	UNDWATER PRO	GRES
REMARKS Cat scanned location and hand dug inspection pit carried out. Sample Legend O - Small Disturbed (tub) Sample Sample Sample						R7 p.	امور	Т	'ne	Dat	te				De W	pth to later	Comn	nen	ts	
D - Small Disturbed (tub) UT - Undisturbed 100mm Diameter B. Bulk Disturbed Sample		Date	 11b De	pti KZ	<u> 10p</u>	ILC BE	150		ha		***************************************									
	REI	MARKS	Catsc	anned	location	on and	hand	d dug in	spection (pit carried	out.	18.45	lulk D	isturbed			Sa P	smple - Undi	sturbed Piston Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

21345

BOREHOLE NO. **BH04** CONTRACT Rathmullen, Drogheda, Co. Louth SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** DATE COMMENCED 09/11/2018 **BOREHOLE DIAMETER (mm)** 200 09/11/2018 DATE COMPLETED GROUND LEVEL (m AOD) BOREHOLE DEPTH (m) 8.50 SPT HAMMER REF. NO. BORED BY W.Cahill CLIENT PROCESSED BY F.C **ENGINEER ENERGY RATIO (%)** Waterman Moylan Samples Standpipe Details $\widehat{\mathbf{E}}$ \mathbf{E} Elevation Recovery Ref. Number Sample Type Field Test Depth (Depth (Description Depth (m) Results - 0 Soft dark brown sandy SILT/CLAY with some gravel 0.20 ×0----Firm to stiff light brown sandy SILT/CLAY with gravel and some cobbles and boulders N = 17(2, 4, 3, 5, 5, 4) 4A105612 В 1.00 N = 21 (3, 2, 4, 4, 4, 9) AA105613 В 2.00 N = 25(3, 5, 4, 5, 7, 9) AA105614 8 3.00 3.30 Very stiff brown gravelly CLAY with cobbles N = 31 (6, 5, 7, 7, 9, 8) AA105615 В 4.00 AA105616 8 5.00 (5, 5, 5, 5, 8, 15) Ō 5.80 Stiff light brown sandy SILT/CLAY with gravel N = 24 (3, 6, 4, 5, 5, 10) F6 AA105617 В 6 00 6.80 Very stiff mottled light and dark brown sandy N = 35 (8, 7, 9, 10, 6, 8) AA105618 в 7.00 SILT/CLAY with gravel and angular cobbles N = 50/150 mm (8, 7, 15, 35) AA105619 В 6.00 8.50 Obstruction End of Borehole at 8.50 m WATER STRIKE DETAILS HARD STRATA BORING/CHISELLING Casing Rise Water Sealed Time Time Comments From (m) To (m) Comments Depth Strike Αt To (min) (h) 14/11/18 5.6 0.5 No water strike 2 8.3 8.5 GDT **GROUNDWATER PROGRESS** Casing Hole Depth to Water Comments **INSTALLATION DETAILS** Date Depth Depth Date | Tip Depth RZ Top | RZ Base Type Sample Legend D - Small Disturbed (tub) B - Bulk Disturbed LB - Large Bulk Disturbed Env - Environmental Samp REMARKS Cat scanned location and hand dug inspection pit carried out. UT - Undisturbed 100mm Diameter Sample P - Undisturbed Piston Sample W - Water Sample GSL

GEOTECHNICAL BORING RECORD

REPORT NUMBER

	NTRAC		ithmullen,	Drogheda,Co.Louth	······································						BOREHO SHEET	DLE NO	Sheet 1 of 1	
		NATES LEVEL (1	m AOD)		I	E OLE DIAMI OLE DEPTI	•	mm)	Dando 20 200 5.80	[]	DATE CO		ICED 07/11/2018 TED 07/11/2018	
1	ENT SINEEF	₹ Wa	aterman M	ovian	ı	VIMER REF (RATIO (%				1	BORED :		W.Cahill Y F.C	
				-,							ples			
Depth (m)			De	escription		Legend	Flevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
- 0	TOP	SOIL/sub	soil			418 718 7		0.25						
1	Firm grave	to stiff lig	ht brown s and occ	sandy SILT/CLAY wi asional boulders	ith			1.90	AA105607	83	1.00		N = 18 (2, 3, 3, 4, 5, 6)	
2	Very grave	stiff dark	brown sa s and occ	ndy SILT/CLAY with asional boulders	1			1.30	AA105608	В	2.00		N = 30 (3, 4, 5, 7, 9, 9)	
3						0 X			AA105609	В	3.00		N = 50/225 mm (8, 12, 14, 15, 21)	
4						2 A			AA105610	в	4.00		N = 36 (6, 9, 9, 10, 9, 8)	
15								5.80	AA105611	8	5.00		N = 31 (2, 4, 5, 7, 7, 12) N = 50/225 mm	
6		ruction of Boreho	ole at 5.80) m				Avenita de la composito de la					(12, 13, 16, 15, 19)	
8								And the second s					No. of the Control of	
9														
			ORING/CI Time	ISELLING		Wate	er I C	asing	Sealed	Ris	e I T	ima	ATER STRIKE DET	AILS
	m (m) 3.1 5.6	3.3 5.8	(h) 0.75 2	Comments		Strik		epth	At	To		nin)	No water strike	
												GR	ROUNDWATER PRO	GRESS
INC	L	ATION DE	TAII S			Dat	e	Hole	Casing	De	pth to ater	Comme		
	Date			pp RZ Base	Туре			Depth	Depth	<u> </u>	rater			
INS	MARK:	S Catso	anned loc	ation and hand dug	inspection p	it carried	out.	B-Bull LB-La	ple Legen all Disturbed (tub c Disturbed rge Bulk Disturbe nvironmental Sa	ed	+ Vial + Tub)	Samp P - U	Undisturbed 100mm Diameter ple indisturbed Piston Sample Nater Sample	

چ _{دين}	Silver And	RIAL PIT	RFCO	BU					REPORT N		
	331.	: ::/>L		· •••					21	345	
CON	TRACT 21345						TRIAL PI	T NO.	TP()1 et 1 of 1	
LOG	GED BY TOS	CO-ORDINAT	ES				DATE ST		D 05/1	1/2018 1/2018	
CLIE		GROUND LEV	/EL (m)				EXCAVA METHOD	TION	JCB	3CX	
ENG	NEER Waterman Moylan	<u></u>	1			T	<u> </u>			T	
								Sample	es	(Pa)	оте
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSOIL		7.7 27.			-	1 0,00			-	
1.0	Firm / stiff brown sandy gravelly CLAY with a cobble content / low boulder content. Sand i coarse gravel is angular / subangular of green	medium s fine to y limestone	8	0.30			AA104513	В	0.50		
2.0	Compact very gravelly SAND with medium of and medium boulder content. Sand is fine to gravel is subangular / subrounded fine to collimestone	cobble content o coarse arse of grey	0	1.30			AA104514	В	1.50		W RELIGIOUS CONTRACTOR
	End of Trial Pit at 2.60m		0	2.60			AA104515	В	2.50		And the second s
3.0			S CONTRACTOR S CON								
4.0											

Grou Dry	indwater Conditions		L	<u> </u>		1				<u>I</u>	<u> </u>
Stabi Good	Hity i										
Gene Trial	eral Remarks pit terminated at 2.6 due to refusal in Boulder	s		, de la						***************************************	

									REPORT N	UMBER	
j.c	331 131	RIAL PIT	RECO	RD					21	345	
CON	TRACT 21345						TRIAL P	IT NO.	TP0		
		CO-ORDINAT	TES				SHEET DATE S'	TARTE		t 1 of 1 1/2018	
LOG	GED BY TOS						DATE C		TED 05/1	1/2018	
CLIE	NT NEER Waterman Moylan	GROUND LE	VEL (m)				EXCAVA METHO	NOITA D	JCB	зсх	
INGI	NEET Waterman Moyar	<u></u>						Sample	es	_	ate
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSOIL		7 3 4 3 4 3 7 3 7								
ļ	Firm / ctiff orange brown clightly grountly ca	ndu CLAV	10.10	0.35			AA104510	В	0.20		
	Firm / stiff orange brown slightly gravelly sar Sand is fine to coarse gravel is angular / sul to coarse of dark grey limestone	bangular fine					AA104511	В	0.50		
1.0											
	Compact BOULDERS and COBBLES with g sandy clay. Sand is fine to coarse gravel is a subangular fine to coarse of grey limestone	gravelly very angular /		1.30			AA104512	: B	1.50		
2.0											
	End of Trial Pit at 2.30m			2.30							
3.0			e e e e e e e e e e e e e e e e e e e			ANGEL STATEMENT AND ANGEL					
4.0											
7.0											
		MANAGEM AND									
Grou Dry	ndwater Conditions										
Stabi Good									-		
	ral Remarks pit terminated at 2.3 due to refusal in Boulder	s									

13	331	"	RIAL PIT	RECO	RD				1111	REPORT N	имвек 345	
CON	TRACT 21345							TRIAL P	IT NO.	TPO)3 et 1 of 1	
LOG	GED BY TOS		CO-ORDINAT						TARTED OMPLET	05/1	1/2018 1/2018	
CLIE	NT INEER Waterman M	loylan	GROUND LEV	/EL (m)	***************************************			EXCAV/ METHO		JCB	3CX	
									Sample	s	(g)	meter
	Geote	echnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSOIL Firm / stiff brown sligh cobble content. Sand subangular / subround	is fine to coarse grave	el is	0 0	0.30			AA104506	В	0.50		
1.0	Compact very gravelly and medium boulder of gravel is subangular / limestone	content. Sand is fine to	o coarse	0	1.00	**************************************		AA104507	В	1.20		
2.0				0				AA104508	B	2.00		
3.0	End of Trial Pit at 3.00	9m	<u></u>	0	3.00			AA104509	В	3.00		

Groundwater Conditions Dry

4.0

Groundwater Conditions
Dry

Stability
Good

General Remarks
Trial pit terminated at scheduled depth

	531	TF	RIAL PIT	RECO	RD				1	REPORT N	IUMBER	i
	TRACT 21345							TRIAL PI	T NO.	TP()4	
LOG	GED BY TOS		CO-ORDINA	res				DATE ST		05/1	et 1 of 1 1/2018	
CLIE			GROUND LE	VEL (m)				EXCAVA METHOD	TION		1/2018 3CX	
ENG	NEER Waterman Moylan	***************************************							Samples	5		iter
	Geotechnic	al Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSOIL Firm / stiff orange brown slig	thtly gravelly sand	y CLAY.	7 7 7 7 7 7 7 7	0.30	***************************************		AA104503	В	0.20		
	Firm / stiff orange brown slig Sand is fine to coarse grave to coarse of dark grey limes	l is angular / suba tone	ngular fine	0				AA104504	В	0.50		
1.0								1000				
	Compact BOULDERS and C sandy clay. Sand is fine to c subangular fine to coarse of	COBBLES with gra oarse gravel is an grey limestone	velly very gular /		1.50		7.70	AA104505	В	1.60	THE	117711111111111111111111111111111111111
2.0	End of Trial Pit at 2.30m				2.30							
3.0				The state of the s	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19				
4.0					7.7.00					TO THE PARTY OF TH		n control
7777445												
Group	ndwater Conditions											
Ory	idwater Conditions											
Stabil Good							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•••			
Gener	ral Remarks bit terminated at 2.3 due to slo	W progress in con	nnact houlde	rs and co	hbles							
=: (E31444 III 401	-past soulds									

LOGGED BY TOS CLIENT GROUND LEVEL (m) Samples EXCAVATION JOB 30X METHOD Samples GROUND LEVEL (m) Samples Firm / stiff crange brown slightly gravelly sandy CLAY. Sand at fine to coarse gravel is angular / subangular fine to coarse of dark gay limestone To coarse of dark gay limestone End of Trial Pit at 1.80m Firm / stiff coarse of grey limestone To coarse of dark gay limestone End of Trial Pit at 1.80m To coarse of dark gay limestone	gradienie		TOIAI DIT	PECC	ממ					REPORT N		ì
LOGGED BY TOS COORDINATES GROUND LEVEL (m) Samples GROUND LEVEL (m) Samples GROUND LEVEL (m) Samples GROUND LEVEL (m) Samples GROUND LEVEL (m) GROUND LEVEL (m) Samples GROUND LEVEL (m) Samples GROUND LEVEL (m) Samples GROUND LEVEL (m) GROUND LEVEL (m) Samples GROUND LEVEL (m) GROUND LEVE	แอสา		INIAL FII	NECC	יחט					21	345	
CO-GROBATES CO-GROWATES GROUND LEVEL (m) CO-GROWATES	CONTRACT	21345							IT NO.			
Geotechnical Description Geotechnical Description Geotechnical Description Geotechnical Description Geotechnical Description TOPSOIL Firm / slift crange brown slightly gravelly sandy CLAY. Sand is fine to coarse gravel is angular / subangular fine to coarse of dark groy imestone Compact BOULDERS and COBBLES with gravelly very subangular fine to coarse or gravel is angular / subangular fine fine fine fine fine fine fine fine	LOGGED BY	TOS	CO-ORDINA	TES				DATE S		D 05/1		
Geotechnical Description Geotechnical Description TOPSOIL Firm / slift orange brown slightly gravelly sandy CLAY. Sand is fine to coarse grave its argular / subangular fine to coarse grave its argular / subangular fine to coarse of gray limestone Compact BOULDERS are COBBLES with gravely very subangular fine to coarse of gray limestone End of Trial Pit at 1.60m AA104502 B 1.20 Indicate the coarse of gray limestone o	CLIENT		GROUND LI	EVEL (m)								
TOPSOIL Firm / slift orange brown slightly gravelly sandy CLAY. Sand is fine to coarse gravel is angular / subangular fine to coarse of dark grey limestone Compact BOULDERS and COBBLES with gravelly very sandy play. Sand is fine to coarse gravel is angular / subangular fine to coarse of grey limestone TOPSOIL	ENGINEER	Waterman Moylan			1	I	1				1	-T
TOPSOIL Firm / slift orange brown slightly gravelly sandy CLAY. Sand is fine to coarse gravel is angular / subangular fine to coarse of dark grey limestone Compact BOULDERS and COBBLES with gravelly very sandy play. Sand is fine to coarse gravel is angular / subangular fine to coarse of grey limestone TOPSOIL									Sample	es	<u>R</u>	neter
TOPSOIL Firm / slift orange brown slightly gravelly sandy CLAY. Sand is fine to coarse gravel is angular / subangular fine to coarse of dark grey limestone Compact BOULDERS and COBBLES with gravelly very sandy play. Sand is fine to coarse gravel is angular / subangular fine to coarse of grey limestone TOPSOIL		Geotechnical Description	1			_	rike				st (KP	netror
TOPSOIL Firm / slift orange brown slightly gravelly sandy CLAY. Sand is fine to coarse gravel is angular / subangular fine to coarse of dark grey limestone Compact BOULDERS and COBBLES with gravelly very sandy play. Sand is fine to coarse gravel is angular / subangular fine to coarse of grey limestone TOPSOIL				gend	htd (vation	ater St	mple f	e c	#E	ne Te	nd Pe
Firm / stiff orange brown slightly gravelly sandy CLAY. Sand is fine to coarse gravel is angular / subangular fine to coarse of dark grey immestane 10 Compact BOULDERS and COBBLES with gravelly very sandy clay. Sand is fine to coarse gravel is angular / subangular fine to coarse of grey timestone End of Trial Pit at 1.50m 1.60 AA104502 B 1.20	0.0 TOPS	N I		1	3.5	ü	×	Sa	<u> 7</u>	<u> </u>	- Aa	H
Firm / stiff crange brown slightly gravelly sandy CLAY Sand is fine to coarse gravel is angular / subangular fine	10/0	JIL.		1.717.7								
Compact BOULDERS and COBBLES with gravelly very subangular fine to coarse gravel is angular / subangular fine to coarse of grey limestone End of Trial Pit at 1.60m And 1.60 And 1.60 And 1.60 And 1.60 Individual Pit at 1.60m Individual Pit	Firm /	stiff orange brown slightly gravelly s	sandy CLAY.	46.46	0.40				_			
Successful to the course gravel is angular / subangular fine to coarse of gravel is angular / subangular fine to coarse gravel fine	to coal	s line to coarse graver is angular / s se of dark grey limestone	subangular tine					AA104501	В	0.50	***************************************	
Successful to the course gravel is angular / subangular fine to coarse of gravel is angular / subangular fine to coarse gravel fine				2-	1.00							
End of Trial Pit at 1.60m 1.60 1.6	sandy	act BOULDERS and COBBLES with clay. Sand is fine to coarse gravel is	h gravelly very s angular /	4	1.00							
a.o. iroundwater Conditions ry tability cood	subang	guiai line to coarse of grey limeston	ie					AA104502	В	1.20		-
asion descriptions Itability It	End of	Trial Pit at 1.60m			1.60							
asion descriptions Itability It												
tability Reneral Remarks	2.0										***************************************	
tability Reneral Remarks				-								
tability Reneral Remarks												
tability Reneral Remarks												
iroundwater Conditions ry tability lood eneral Remarks	3.0											
iroundwater Conditions iny Itability iood Itability It												
iroundwater Conditions iny Itability iood Itability It												
iroundwater Conditions iny Itability iood Itability It												
tability lood eneral Remarks	4.0											
tability lood eneral Remarks												
tability lood eneral Remarks												
tability lood eneral Remarks												
tability lood eneral Remarks	iroundwater	Conditions										
eneral Remarks	Dry	oonalions										
eneral Remarks												
eneral Remarks rial pit terminated at 1.6 due to slow progress in compact boulders and cobbles	Stability Good											
riai pit terminated at 1.6 due to slow progress in compact boulders and cobbles	eneral Rema	rks								Aug		
	riai pit termin	ated at 1.6 due to slow progress in	compact boulde	ers and col	bbles							

REPORT NUMBER

				·				**************************************
CONTRACT Rathmullen , Droghe	da , Co.Louth				PRO SHE	BE NO. ET		DP01 Sheet 1 of 1
CO-ORDINATES					DATI	E DRILLE		05/11/2018
GROUND LEVEL (mOD)	HAMMER MASS (kg)	1	50		DATI	E LOGGE	D	05/11/2018
CLIENT ENGINEER Waterman Moylan	INCREMENT SIZE (mi FALL HEIGHT (mm)	(11)	100 500		PRO	BE TYPE	.	DPH
Depth (i	cal Description	Legend	Depth (m)	Elevation (mOD)	Water	Depth (m)	Probe Readings (Blows/Increment)	Graphic Probe Record
2.0 End of Probe at 2.50 m						0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 2.00 2.10 2.20 2.30 2.40	0 3 4 4 5 8 8 5 5 5 6 6 6 7 5 4 4 4 2 11 11 11 11 11 11 11 11 11 11 11 11 1	
4.0								
GROUNDWATER OBSERVATIONS REMARKS								

REPORT NUMBER

	RACT Rathmullen , Drogheda , (Co.Louth			·····	PRO	BE NO.		DP02
CO-O	RDINATES					SHE			Sheet 1 of 1
	JND LEVEL (mOD)	HAMMER MASS (kg)		50		4	E DRILLI E LOGGI		05/11/2018 05/11/2018
CLIEN		INCREMENT SIZE (mn	n)	100		-			ALL DESCRIPTION OF THE PROPERTY OF THE PROPERT
ENGIN		FALL HEIGHT (mm)		500	,	PRO	BE TYP	E	DPH
Depth (m)	Geotechnical De	escription	Legend	Depth (m)	Elevation (mOD)	Water	Depth (m)	Probe Readings (Blows/Increment)	Graphic Probe Record
1.0							0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 2.00 2.10 2.20 2.30 2.40 2.50 2.70	2 6 10 11 9 11 14 16 16	
3.0	End of Probe at 3.10 m						2.80 2.90 3.00	18 19 25	
4.0									
GROU	INDWATER OBSERVATIONS		!					<u> </u>	

REPORT NUMBER

15	ist								İ	21345
CONT	TRACT	Rathmullen , Drogheda , Co	.Louth				PRO	BE NO.		DP03
		-					SHE	ET		Sheet 1 of 1
CO-0	RDINAT	ES					DATE	DRILLE	ΞD	05/11/2018
GROI	IND LEV	/EL (mOD)	HAMMER MASS (kg)	ı	50		4	LOGGE		05/11/2018
		LL (HIOD)	INCREMENT SIZE (m	am)	100					warr.
CLIEN		Materman Moules		,			PRO	BE TYPI	E	DPH
ENGI	NEER	Waterman Moylan	FALL HEIGHT (mm)	T	500				ı	T***
Depth (m)		Geotechnical Desc	cription	Legend	Depth (m)	Elevation (mOD)	Water	Depth (m)	Probe Readings (Blows/Increment)	Graphic Probe Record
1.0	End of	Probe at 1.20 m						0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10	0 0 0 5 6 6 7 12 18 21 25	
3.0										
4.0										
GROU		TER OBSERVATIONS				and a second and a				

REPORT NUMBER

	ر تال	D	YNAIVIIC PROBE F	(ECOI	\D					21345
CONT	RACT	Rathmullen , Drogheda , Co.	Louth				PRO SHE	BE NO. ET		DP04 Sheet 1 of 1
CO-O	RDINAT	ES						E DRILLI	ED .	05/11/2018
GROL	JND LE\	/EL (mOD)	HAMMER MASS (kg))	50			LOGGE		05/11/2018
CLIEN		•	INCREMENT SIZE (m	รถา)	100					501
ENGI	NEER	Waterman Moylan	FALL HEIGHT (mm)		500		PRO	BE TYP	= 	DPH
Depth (m)		Geotechnical Desc	ription	Legend	Depth (m)	Elevation (mOD)	Water	Depth (m)	Probe Readings (Blows/Increment)	Graphic Probe Record
1.0	End of	f Probe at 1.50 m						0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30	0 2 6 7 8 5 8 7 8 8 6 21 23 25	
2.0										
4.0										
GROU REMA		TER OBSERVATIONS								

REPORT NUMBER

JS	31./								Z 1040	,
CONT	RACT Rathmullen , Drogheda , Co.Lo.	uth				PRO SHE	BE NO.		DP05 Sheet 1 of 1	
	RDINATES JND LEVEL (mOD)	HAMMER MASS (kg)		50		DATI	E I E DRILLE E LOGGE		05/11/2018 05/11/2018	
LIEN	· · ·	INCREMENT SIZE (mr FALL HEIGHT (mm)	m)	100 500		PRO	BE TYPI	=	DPH	
Depth (m)	Geotechnical Descript	tion	Legend	Depth (m)	Elevation (mOD)	Water	Depth (m)	Probe Readings (Blows/Increment)	Graphic P Record	robe d : 20 25
1.0	End of Probe at 1.10 m						0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	1 2 4 5 7 8 5 7 8 27 40		
2.0										
3.0										
4.0										
GRO	UNDWATER OBSERVATIONS						<u> </u>			
REMA	ARKS									

Contract:	Rathmullar	n, Drogheda				Contract No.	(F2C) (F2C)
Test No.	SA01	i, Drogneda				Contract No.	21313
Client	Waterman	Movlan					
Date:	06/11/20						
	of ground co						
from	to		Description				Ground water
0.00	0.30	TOPSOIL	Description				Ground Water
0.30	1.50	Firm / stiff brow	wn slightly a	ravelly cano	ly CL AY with m	edium cobble	
0.50	1.50	content	wir slightly g	lavelly Saile	IY CLAT WITH III	ledidili cobble	-
		Content					-
Notes:	<u> </u>	<u> </u>					
ield Data				Field Test			
Depth to	Elapsed	1		Depth of P	it (D)	1.50	Πm
Water	Time	1		Width of P		1.50	√m
(m)	(min)			Length of		1.80	վ <u>՝՝՝</u>
(111)	(11111)			Longin of	(-)	1.00	_
0.92	0.00	1		Initial dent	h to Water =	0.92	Πm
0.93	0.50	-			to water =	1.00	∃'''
0.93	1.00	1			ne (mins)=	60.00	⊣ '''
0.93	1.50	-		ciapseu tii	ne (mins)=	60.00	_
		-		Tan 26	انمه مامامه مس	· F	٦
0.93	2.00	-			meable soil		- <u>m</u>
0.94	2.50	-		Base of pe	rmeable soil		_lm
0.94	3.00	-					
0.94	3.50	-					
0.94	4.00	4					
0.94	4.50			_			7 -
0.94	5.00	1	_	Base area=		2.7	m2
0.95	10.00	*Av. side area o	of permeable				m2
0.96	15.00	_		Total Expo	sed area =	6.264	_m2
0.97	20.00						
0.97	25.00						
0.98	30.00	Infiltration rate	(f) =	Volume of	water used/un	it exposed area /	' unit time
0.98	40.00						
0.99	50.00	f=	0.00057	m/min	or	9.5785E-06	6 m/sec
1.00	60.00	1					
	70.00	Dept	h of water v	s Elapsed Ti	me (mins)		
	70.00 T						
(SI	60.00 — 50.00 — 40.00 — 30.00 —					· ·	
Ë	50.00					•	
e j	40.00			- rejin	•		
<u>,</u> E	30.00						
-	30.00 T				•		
Se	20.00 10.00 		V-7-00		•		
<u>a</u>	10.00			-			
ш			• •				
	0.00	0.03 0.03	0.04 0	05 000	0.07 0.00	0.00 1.00	1.01
	0.91	0.92 0.93	0.94 0.	95 0.96 t h to Wate i	0.97 0.98	0.99 1.00	1.01

	way D	csign i	value fro	AIII HEIC	i rear	.o	(F2C) IG
Contract: est No.	Rathmullar SA02	n, Drogheda				Contract No.	21345
Client Date:	Waterman 06/11/20						
	of ground co						
from	to		cription				Ground water
0.00	0.30	TOPSOIL	on peron				Cround Water
0.30	1.50	Firm / stiff brown	slightly gravell	v sandv CLA	Y with m	edium cobble	7
		content		<i>y</i>			
lotes:		<u></u>					
ield Data			<u>Field</u>	l Test			
Depth to	Elapsed	1	Dep	th of Pit (D)		1.50	m
Water	Time			th of Pit (B)		1.50	m
(m)	(min)			gth of Pit (L)		1.80	m
0.81	0.00	-	Initis	al depth to W	later =	0.81	Пm
0.81	0.50	1		depth to wa		0.92	∃'''
0.82	1.00	1		sed time (mi		60.00	⊣'''
0.82	1.50	1	Liup	sea time (mi	113)-		
0.82	2.00	1	Ton	of permeabl	e soil	T	√m
0.82	2.50	1		of permeable of permeable			⊣ ‴
0.83	3.00	1	Dase	or permean	ile suil		 !'''
0.83	3.50	1				Ta .	
0.83							
	4.00	4					
0.84	4.50	-	Dana			2.7	٦
0.84	5.00	+ A = : d = = = = = = = = =		area=		2.7	m2
0.85	10.00	*Av. side area of p					m2
0.86	15.00	1	lota	l Exposed ar	ea =	6.9075	m2
0.87	20.00	-					
0.88	25.00		NA Williams				# Professor • MI - April • Professor
0.90		Infiltration rate (f)	= Volu	me of water	used/uni	it exposed area.	/ unit time
0.90	40.00			522		THE STATE OF THE S	
0.92	50.00	f= 0.	.00068 m/r	nin or		1.1401E-0	5 m/sec
0.92	60.00						
		Depth o	f water vs Elap	sed Time (m	nins)		
	70.00						\neg
7	60.00 — 50.00 — 40.00 — 30.00 —					•	
<u>ž</u> .	50.00					•	
٤	40.00					,	
Ĕ	40.00						
F	30.00			-	•		
P	20.00	993		*			
Š	20.00 — 10.00 —			2.			
<u></u>			•				
	0.00	*****	2 02 32 00 00 00 00 00 00 00 00 00 00 00 00 00	- 1 - 1		The state of the s	
	0.80	0.82 0.	84 0.86 Depth to	0.88 Water (m)	0.90	0.92	0.94

from 0.00 0.30	f ground co	Moylan 18						
0.00		onditions						
	to		Description					Ground water
0.30	0.30	TOPSOIL						
	1.50	Firm / stiff brow	wn slightly g	ravelly sar	ndy CLAY			
Notes:	-							
ield Data		_		Field Test	<u>t</u>			_
Depth to	Elapsed			Depth of			1.50	m
Water	Time			Width of			1.50	m
(m)	(min)			Length o	f Pit (L)		1.80	m
0.70	0.00	1		Initial der	th to Wate	r =	0.70	Πm
0.71	0.50	1			th to water		0.75	
0.71	1.00	1			ime (mins)=		60.00	
0.71	1.50	1						
0.71	2.00	1		Top of pe	ermeable so	il		\exists_{m}
0.71	2.50				ermeable s			
0.71	3.00	1		Daoc of p	orriodadio o			
0.71	3.50	1						
0.71	4.00	-						
0.71	4.50	1						
0.71	5.00	1		Base area	1 —	33	2.7	¬m2
0.72	10.00	*Av. side area d	of nermeable			riod-		m2
0.72	15.00	Av. side ai ea c			osed area =		7.815	m2
0.72	20.00	1		TOTAL EXP	oscu arca -		7.013	
0.72	25.00	1						
0.73	30.00	Infiltration rate	(f) -	Volume o	f water use	d/uni	t exposed area	/ unit time
0.73	40.00		(1) –	volume o	ii watei use	u/ u/II	exposed area	/ unit time
	Second Consu	f=	0.00029	ma /maim			4.7985E-0	C /
0.75 0.75	50.00 60.00	'=	0.00029	HIV HIII	or		4.7903E-U	o m/sec
		Dept	h of water v	s Elapsed ⁻	Time (mins)			
	70.00 T							
(SI	60.00						¥	
Ē	50.00 - 40.00 - 30.00 -						•	
<u>)</u>	40.00		<u> </u>			•	-	
Ē	30.00	E=						
ָּקָ. מַי	20.00							
Se	20.00		•					
<u>ia</u>	20.00		•					
ш	0.00							
	0.69	0.70		0.72 th to Wat	0.73 er (m)	0.74	0.75	0.76
			Deb	ui to mat	Ci (III)			

Soaka	way D	esign f -	value	from f	ield test	ts	(F2C) IG
Contract:	Rathmullar	, Drogheda				Contract No.	21345
Test No.	SA04						
Client	Waterman						
Date:	06/11/20						
	f ground co						
from	to		scription				Ground water
0.00	0.30	TOPSOIL					
0.30	1.50	Firm / stiff brown	slightly g	ravelly sand	y CLAY		
Notes:							
Field Data			- 107 46 U.Z.	Field Test			
Depth to	Elapsed	1		Depth of Pi	+ (D)	1.50	√m
Water	Time			Width of Pi		1.50	⊣'''
							- Common
(m)	(min)	1		Length of F	TC (L)	1.80	_ <u> </u> m
0.54	0.00	1		Initial danti	to Mater	0.54	¬
0.54	0.00	-			to Water =	0.54	- ^m
0.54	0.50	1		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	to water =	0.64	⊣ ^m
0.54	1.00	1		Elapsed tim	ie (mins)=	60.00	_
0.54	1.50	4			7.1	1	¬
0.54	2.00			Top of perr			m
0.55	2.50	1		Base of per	meable soil		_]m
0.55	3.00	1					
0.55	3.50						
0.55	4.00	1					
0.56	4.50	1					-
0.56	5.00			Base area=		2.7	m2
0.57	10.00	*Av. side area of p	permeable				m2
0.58	15.00]		Total Expos	sed area =	8.706	m2
0.59	20.00]					
0.60	25.00]					
0.61	30.00	Infiltration rate (f)	=	Volume of	water used/ur	it exposed area	/ unit time
0.62	40.00	1					
0.63	50.00] f= 0	.00052	m/min	or	8.6147E-0	6 m/sec
0.64	60.00						
		Depth o	of water v	s Elapsed Tii	me (mins)		
	70.00				****		
	50.00 — 40.00 — 30.00 —					•	
ü	50 00 L						
٤	30.00					▼ //	
je	40.00				*		
Ë	30.00 ₩				•		
Ď	20.00				•		
ose	20.00 — 10.00 —			+			
<u> </u>	10.00		*				
,—	່ 0.00 ├─		T	- i	1 1		
	0.52	0.54 0		0.58 (th to Water	0.60 0.6 (m)	2 0.64	0.66
						*	

Soaka	way D	esign f	-value	from f	ield tests	3	(F2C) IGS
Contract:	Rathmulla	n, Drogheda		14		Contract No.	21345
Test No.	SA05						
Client	Waterman						
Date:	06/11/20						
	of ground c						
from	to		Description				Ground water
0.00	0.30	TOPSOIL					į.
0.30	1.30	Firm / stiff oran	ige brown sl	ightly grave	lly sandy CLAY		
Notes:	Refusal at	1.3 due to cobbl	е				
Field Data				Field Test			
Depth to	Elapsed	7		Depth of Pi	t (D)	1.30	lm
Water	Time	1		Width of Pi		1.50	m
(m)	(min)	1		Length of I		1.80	m
()	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				\-/		
0.60	0.00	1		Initial depti	n to Water =	0.60	m
0.60	0.50	1			to water =	0.68	m
0.60	1.00	1		Elapsed tim		60.00	
0.60	1.50	1			()		
0.60	2.00	1		Top of peri	neable soil		m
0.60	2.50				meable soil		m
0.60	3.00	1					, and
0.60	3.50						
0.60	4.00	1					
0.60	4.50	1					
0.61	5.00	1		Base area=	Γ	2.7	m2
0.62	10.00	*Av. side area o	of permeable	stratum ov	er test period=	4.356	m2
0.63	15.00			Total Expos		7.056	m2
0.64	20.00	1			_	18 18 18 18 18 18 18 18 18 18 18 18 18 1	- Sections
0.64	25.00	1					
0.65	30.00	Infiltration rate	(f) =	Volume of	water used/unit	exposed area /	unit time
0.66	40.00]					
0.67	50.00	f=	0.00051	m/min	or	8.5034E-06	m/sec
0.68	60.00	Depth	n of water v	s Elapsed Tii	me (mins)		
	70.00						_
						•	_
ĺ	60.00 50.00				100		
į	30.00						
ă	40.00 - 30.00 -		≥ %		•	4	_
į	30.00				*		
7	30 00			*			
Š	20.00 10.00 		•				
<u> </u>	10.00		•				
·-	0.00						

0.00

0.59 0.60

0.61

0.62 0.63

0.65

0.64 Depth to Water (m) 0.66 0.67

0.68 0.69

E. S	Surface	Water	Pipe	Network	Calculations
------	---------	-------	-------------	----------------	---------------------

Waterman Moylan		Page 1
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm A

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 5 PIMP (%) 100

M5-60 (mm) 16.500 Add Flow / Climate Change (%) 20

Ratio R 0.300 Minimum Backdrop Height (m) 0.000

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.000

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for Storm A

Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	(mins)	(ha)
0-4	0.902	4-8	2.413	8-12	0.117

Total Area Contributing (ha) = 3.432

Total Pipe Volume $(m^3) = 133.397$

Network Design Table for Storm A

PN	Length (m)	Fall (m)	-			Base Flow (1/s)		HYD SECT		Section Type	Auto Design
_A1.000	28.258	0.471	60.0	0.022	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
_A2.000	87.506	1.458	60.0	0.160	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
_A1.001	62.401	1.248	50.0	0.191	0.00	0.0	0.600	0	225	Pipe/Conduit	♂
_A3.000	90.003	1.000	90.0	0.289	4.00	0.0	0.600	0	225	Pipe/Conduit	ð

Network Results Table

PN	Rain (mm/hr)		US/IL (m)		Σ Base Flow (1/s)				-	Flow (1/s)
S_A1.000	50.00	4.28	33.900	0.022	0.0	0.0	0.6	1.69	67.3	3.6
S_A2.000	50.00	4.86	34.900	0.160	0.0	0.0	4.3	1.69	67.3	26.0
S_A1.001	50.00	5.42	33.429	0.374	0.0	0.0	10.1	1.85	73.7	60.7
S_A3.000	50.00	5.09	33.300	0.289	0.0	0.0	7.8	1.38	54.8	46.9
			(©1982-20	18 Innovy	ze				

Waterman Moylan		Page 2
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

Network Design Table for Storm_A

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S_A1.002 S_A1.003			150.0	0.220 0.133	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	€
S_A4.000 S_A4.001 S_A4.002 S_A4.003 S_A4.004	17.610 26.125 48.247	0.440 0.523 0.965	40.0 40.0 50.0 50.0	0.093 0.076 0.000 0.026 0.000	4.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0	0.600 0.600 0.600 0.600	0 0 0	225 225 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	9 6 6 6
S_A5.000 S_A5.001	51.540 59.116	0.859	60.0	0.130 0.122	4.00	0.0	0.600	0	225 225	Pipe/Conduit Pipe/Conduit	ð
S_A4.005 S_A4.006 S_A4.007 S_A4.008	89.824 13.254	0.898 0.133	100.0 100.0	0.016 0.176 0.036 0.043	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	300 300 300 375	Pipe/Conduit	\$ \$ \$ \$
S_A6.000 S_A4.009				0.106	4.00		0.600	0		Pipe/Conduit Pipe/Conduit	ð

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S A1.002	50.00	6.20	32.031	0.883	0.0	0.0	23.9	1.48	163.1	143.4	
S_A1.003	50.00	6.49	31.575	1.016	0.0	0.0	27.5	2.03	223.9	165.1	
S A4.000	50.00	4.27	34.250	0.093	0.0	0.0	2.5	2.07	82.5	15.1	
S A4.001	50.00	4.41	33.417	0.169	0.0	0.0	4.6	2.07	82.5	27.5	
S A4.002	50.00	4.64	32.976	0.169	0.0	0.0	4.6	1.85	73.7	27.5	
S A4.003	50.00	5.08	32.454	0.195	0.0	0.0	5.3	1.85	73.7	31.7	
S_A4.004	50.00	5.52	31.489	0.195	0.0	0.0	5.3	1.19	47.4	31.7	
S A5.000	50.00	4.51	32.800	0.130	0.0	0.0	3.5	1.69	67.3	21.1	
S_A5.001	50.00		31.941	0.252	0.0	0.0	6.8	1.46	58.2	40.9	
S A4.005	50.00	5 70	31.127	0.463	0.0	0.0	12.5	1.28	90.6	75.2	
S_A4.006	50.00		31.034	0.639	0.0	0.0	17.3		111.1		
S A4.007	50.00		30.136	0.675	0.0	0.0	18.3		111.1		
S_A4.008	50.00		29.928	0.718	0.0	0.0	19.4		200.1		
S_A6.000	50.00	4.50	29.750	0.106	0.0	0.0	2.9	0.92	36.6	17.2	
S_A4.009	50.00	7.97	29.388	0.955	0.0	0.0	25.9	1.17	185.8	155.2	

Waterman Moylan		Page 3
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

Network Design Table for Storm_A

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S_A7.000	88.415	0.737	120.0	0.270	4.00	0.0	0.600	0	225	Pipe/Conduit	ď
S_A4.010	32.722	0.109	300.0	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	ď
S_A1.004	26.397	0.132	200.0	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	•
S_A8.000				0.170	4.00		0.600	0		Pipe/Conduit	0
S A8.001	53.324	0.533	100.0	0.101	0.00	0.0	0.600	0	225	Pipe/Conduit	₽
S_A8.002	66.822	0.334	200.0	0.121	0.00	0.0	0.600	0	300	Pipe/Conduit	0
S_A9.000	46.881	0.469	100.0	0.096	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S_A8.003	17.447	0.087	200.0	0.012	0.00	0.0	0.600	0	375	Pipe/Conduit	•
S_A10.000	88.672	0.443	200.0	0.212	4.00	0.0	0.600	0	225	Pipe/Conduit	0
S_A10.001	59.851	0.299	200.0	0.206	0.00	0.0	0.600	0	300	Pipe/Conduit	•
S_A8.004				0.027	0.00	0.0	0.600	0	450	Pipe/Conduit	₩
S_A8.005	34.916	0.349	100.0	0.126	0.00	0.0	0.600	0	450	Pipe/Conduit	₫*
S_A11.000	87.592	0.438	200.0	0.120	4.00	0.0	0.600	0	225	Pipe/Conduit	ð

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)			Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S_A7.000	50.00	5.24	32.000	0.270	0.0	0.0	7.3	1.19	47.4	43.8	
S_A4.010	50.00	8.39	29.079	1.225	0.0	0.0	33.2	1.29	278.8	199.0	
S_A1.004	50.00	8.64	28.895	2.241	0.0	0.0	60.7	1.72	485.8	364.1	
S_A8.000 S_A8.001 S_A8.002	50.00 50.00 50.00	5.47	31.850 31.513 30.904	0.170 0.271 0.392	0.0 0.0 0.0	0.0 0.0 0.0	4.6 7.3 10.6	1.07 1.31 1.11	42.4 52.0 78.3	27.7 44.0 63.7	
S_A9.000	50.00	4.60	31.850	0.096	0.0	0.0	2.6	1.31	52.0	15.6	
S_A8.003	50.00	6.70	30.495	0.500	0.0	0.0	13.5	1.28	141.1	81.3	
S_A10.000 S_A10.001	50.00		30.400 29.882	0.212 0.418	0.0	0.0	5.8 11.3	0.92	36.6 78.3	34.5 68.0	
S_A8.004 S_A8.005	50.00		29.432 29.350	0.945 1.071	0.0	0.0	25.6 29.0		228.1 323.4		
S_A11.000	50.00	5.59	29.900	0.120	0.0	0.0	3.3	0.92	36.6	19.6	

Waterman Moylan		Page 4
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

Network Design Table for Storm_A

PN	Length (m)		-	I.Area (ha)						Section Type	Auto Design
S_A8.006	7.952	0.040	200.0	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	•
S_A1.005	94.205	0.628	150.0	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	•

Network Results Table

PN	Rain (mm/hr)		•		Σ Base Flow (1/s)				-		
S_A8.006	50.00	7.27	29.001	1.191	0.0	0.0	32.3	1.43	228.1	193.6	
S A1.005	49.20	9.44	28.763	3.432	0.0	0.0	91.5	1.99	561.6	548.7	

Waterman Moylan		Page 5
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	pianiade
Micro Drainage	Network 2018.1.1	

Manhole Schedules for Storm_A

MH Name	MH CL (m)	MH Depth (m)	Con	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m	Diameter	Back (r
S_A1	35.350	1.450	Open	Manhole	1200	S_A1.000	33.900	225				
S_A2	36.400	1.500	Open	Manhole	1200	S_A2.000	34.900	225				
S_A3	35.000	1.571	Open	Manhole	1200	S_A1.001	33.429	225	S_A1.000	33.42	9 225	
									S_A2.000	33.44	2 225	
S_A4	34.800	1.500	Open	Manhole	1200	S_A3.000	33.300	225				
S_A5	33.750	1.719	Open	Manhole	1350	S_A1.002	32.031	375	S_A1.001	32.18	1 225	
									S_A3.000	32.30	225	
S_A6	33.330	1.755	Open	Manhole	1350	S_A1.003	31.575	375	S_A1.002	31.57	5 375	
S_A7		1.500	1 -	Manhole	1200	S_A4.000	34.250	225				
_	34.850		Open	Manhole	1200	S_A4.001	33.417	225	S_A4.000	33.41	7 225	
_	34.550		Open	Manhole	1200	S_A4.002	32.976	225	S_A4.001	32.97	5 225	
_	34.000		-	Manhole	1200	S_A4.003	32.454	225	S_A4.002	32.45		
	33.150		Open	Manhole	1200	S_A4.004	31.489	225	S_A4.003	31.48	9 225	
	34.300	1.500	Open	Manhole	1200	S_A5.000	32.800	225				
S_A13		1.709	-	Manhole	1200	S_A5.001	31.941	225	S_A5.000	31.94		
S_A14	32.950	1.823	Open	Manhole	1200	S_A4.005	31.127	300	S_A4.004	31.22		
									S_A5.001	31.20		
_	32.800			Manhole	1200	S_A4.006	31.034	300	S_A4.005	31.03	4 300	
S_A16	32.110	1.974	Open	Manhole	1200	S_A4.007	30.136	300	S_A4.006	30.13	300	
S_A17		1.972	-	Manhole	1350	S_A4.008	29.928	375	S_A4.007	30.00	3 300	
S_A18			-	Manhole	1200	S_A6.000	29.750	225				
S_A19	31.500	2.112	Open	Manhole	1350	S_A4.009	29.388	450	S_A4.008	29.74		
									S_A6.000	29.61	3 225	
	33.500			Manhole	1200	S_A7.000	32.000	225				
S_A21	32.850	3.771	Open	Manhole	1500	S_A4.010	29.079	525	S_A4.009	29.15		
									S_A7.000	31.26		
S_A22	32.750	3.855	Open	Manhole	1500	S_A1.004	28.895	600	S_A1.003	31.13		
									S_A4.010	28.97	525	
_	33.350		-	Manhole	1200	S_A8.000	31.850	225				
S_A24				Manhole	1200	S_A8.001	31.513	225	S_A8.000	31.51		
				Manhole	1200	S_A8.002	30.904	300	S_A8.001	30.97	9 225	
_				Manhole	1200	S_A9.000	31.850	225				
S_A27	32.950	2.455	Open	Manhole	1350	S_A8.003	30.495	375	S_A8.002	30.57		
									S_A9.000	31.38	1 225	
				Manhole		S_A10.000	30.400	225		_	_	
_				Manhole		S_A10.001	29.882		S_A10.000	29.95		
S_A30	32.800	3.368	Open	Manhole	1350	S_A8.004	29.432	450	S_A8.003	30.40		
									S_A10.001	29.58	2 300	
					©1982-2	018 Innov	yze					

Waterman Moylan		Page 6
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	1

Manhole Schedules for Storm_A

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m	Diameter	Back (r
S_A31	33.050	3.700	Open Manhole	1350	S_A8.005	29.350	450	S_A8.004	29.35	0 450	
S_A32	31.350	1.450	Open Manhole	1200	S_A11.000	29.900	225				
S_A33	32.550	3.549	Open Manhole	1350	S_A8.006	29.001	450	S_A8.005	29.00	1 450	
								S_A11.000	29.46	2 225	
S_A34	32.800	4.037	Open Manhole	1500	S_A1.005	28.763	600	S_A1.004	28.76	3 600	
								S_A8.006	28.96	1 450	
S_A33	31.500	3.365	Open Manhole	1800		OUTFALL		S_A1.005	28.13	5 600	

Waterman Moylan		Page 7
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	1

PIPELINE SCHEDULES for Storm_A

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S_A1.000	0	225	S_A1	35.350	33.900	1.225	Open Manhole	1200
S_A2.000	0	225	S_A2	36.400	34.900	1.275	Open Manhole	1200
S_A1.001	0	225	S_A3	35.000	33.429	1.346	Open Manhole	1200
S_A3.000	0	225	S_A4	34.800	33.300	1.275	Open Manhole	1200
S_A1.002	0	375	S_A5	33.750	32.031	1.344	Open Manhole	1350
S_A1.003	0	375	S_A6	33.330	31.575	1.380	Open Manhole	1350
S_A4.000	0		_	35.750			Open Manhole	
S_A4.001	0		_	34.850			Open Manhole	1200
S_A4.002	0	225	S_A9	34.550	32.976	1.349	Open Manhole	1200
S_A4.003	0	225	S_A10	34.000	32.454	1.321	Open Manhole	1200
S_A4.004	0	225	S_A11	33.150	31.489	1.436	Open Manhole	1200
S_A5.000	0	225	S_A12	34.300	32.800	1.275	Open Manhole	1200
S_A5.001	0	225	S_A13	33.650	31.941	1.484	Open Manhole	1200
S_A4.005	0	300	S_A14	32.950	31.127	1.523	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S_A1.000	28.258	60.0	S_A3	35.000	33.429	1.346	Open Manhole	1200
S_A2.000	87.506	60.0	S_A3	35.000	33.442	1.333	Open Manhole	1200
S_A1.001	62.401	50.0	S_A5	33.750	32.181	1.344	Open Manhole	1350
S_A3.000	90.003	90.0	S_A5	33.750	32.300	1.225	Open Manhole	1350
S A1.002	68.415	150.0	s A6	33.330	31.575	1.380	Open Manhole	1350
S_A1.003	35.595	80.0	S_A22	32.750	31.130	1.245	Open Manhole	1500
S_A4.000			_			1.208	Open Manhole	1200
S_A4.001			_				Open Manhole	1200
S_A4.002			_				Open Manhole	
S_A4.003			_				Open Manhole	
S_A4.004	31.511	120.0	S_A14	32.950	31.226	1.499	Open Manhole	1200
S_A5.000	51.540	60.0	S_A13	33.650	31.941	1.484	Open Manhole	1200
S_A5.001	59.116	80.0	S_A14	32.950	31.202	1.523	Open Manhole	1200
S_A4.005	13.987	150.0	_				Open Manhole	1200
				@1982 - 2	2018 Int	novvze		

Waterman Moylan		Page 8
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PIPELINE SCHEDULES for Storm_A

<u>Upstream Manhole</u>

PN	-		MH Name	C.Level (m)		-	MH Connection	MH DIAM., L*W (mm)
S_A4.006	0	300	S_A15	32.800	31.034	1.466	Open Manhole	1200
S A4.007	0	300	S A16	32.110	30.136	1.674	Open Manhole	1200
S_A4.008	0	375	S_A17	31.900	29.928	1.597	Open Manhole	1350
S_A6.000	0	225	S_A18	31.200	29.750	1.225	Open Manhole	1200
S_A4.009	0	450	S_A19	31.500	29.388	1.662	Open Manhole	1350
S_A7.000	0	225	S_A20	33.500	32.000	1.275	Open Manhole	1200
S_A4.010	0	525	S_A21	32.850	29.079	3.246	Open Manhole	1500
S_A1.004	0	600	S_A22	32.750	28.895	3.255	Open Manhole	1500
S_A8.000	0	225	S_A23	33.350	31.850	1.275	Open Manhole	1200
S A8.001	0	225	S A24	33.050	31.513	1.312	Open Manhole	1200
S_A8.002	0	300	S_A25	32.500	30.904	1.296	Open Manhole	1200
S_A9.000	0	225	S_A26	33.350	31.850	1.275	Open Manhole	1200
S_A8.003	0	375	S_A27	32.950	30.495	2.080	Open Manhole	1350

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S_A4.006	89.824	100.0	S_A16	32.110	30.136	1.674	Open Manhole	1200
S A4.007	13.254	100.0	S A17	31.900	30.003	1.597	Open Manhole	1350
S_A4.008	18.697	100.0	S_A19	31.500	29.741	1.384	Open Manhole	1350
S_A6.000	27.458	200.0	S_A19	31.500	29.613	1.662	Open Manhole	1350
S_A4.009	70.135	300.0	S_A21	32.850	29.154	3.246	Open Manhole	1500
S_A7.000	88.415	120.0	S_A21	32.850	31.263	1.362	Open Manhole	1500
S_A4.010	32.722	300.0	S_A22	32.750	28.970	3.255	Open Manhole	1500
S_A1.004	26.397	200.0	S_A34	32.800	28.763	3.437	Open Manhole	1500
S_A8.000	50.603	150.0	S_A24	33.050	31.513	1.312	Open Manhole	1200
S A8.001	53.324	100.0	S A25	32.500	30.979	1.296	Open Manhole	1200
S_A8.002	66.822	200.0	s_A27	32.950	30.570	2.080	Open Manhole	1350
S_A9.000	46.881	100.0	S_A27	32.950	31.381	1.344	Open Manhole	1350
S_A8.003	17.447	200.0	S_A30	32.800	30.408	2.017	Open Manhole	1350
				©1982-2	018 Inr	novvze		

Waterman Moylan		Page 9
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	•

PIPELINE SCHEDULES for Storm_A

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S A10.000	0	225	S A28	31.900	30.400	1.275	Open Manhole	1200
S_A10.001	0	300	S_A29	31.800	29.882	1.618	Open Manhole	1200
S_A8.004	0	450	S_A30	32.800	29.432	2.918	Open Manhole	1350
S_A8.005	0	450	S_A31	33.050	29.350	3.250	Open Manhole	1350
S A11.000		225	C 7/2/2	21 250	20 000	1 225	Open Manhole	1200
5_A11.000	0	223	S_ASZ	31.330	29.900	1.223	Open Mannore	1200
S A8.006	0	450	S A33	32.550	29.001	3.099	Open Manhole	1350
			_				-1	
S_A1.005	0	600	S_A34	32.800	28.763	3.437	Open Manhole	1500

Downstream Manhole

PN	-	-				-		MH DIAM., L*W
	(m)	(I:X)	Name	(m)	(m)	(m)	Connection	(mm)
S A10.000	88.672	200.0	S A29	31.800	29.957	1.618	Open Manhole	1200
S_A10.001	59.851	200.0	S_A30	32.800	29.582	2.918	Open Manhole	1350
S_A8.004	16.494	200.0	S_A31	33.050	29.350	3.250	Open Manhole	1350
S_A8.005	34.916	100.0	S_A33	32.550	29.001	3.099	Open Manhole	1350
S_A11.000	87.592	200.0	S_A33	32.550	29.462	2.863	Open Manhole	1350
S_A8.006	7.952	200.0	S_A34	32.800	28.961	3.389	Open Manhole	1500
C 71 00E	04 205	150 0	0 722	21 500	20 125	2 765	Open Manhole	1800
5 AI.003	94.ZU3	T 2 O • O	o Ass	31.300	20.133	2.700	open mannore	1000

Waterman Moylan		Page 1
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm B

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 5 PIMP (%) 100

M5-60 (mm) 16.500 Add Flow / Climate Change (%) 20

Ratio R 0.300 Minimum Backdrop Height (m) 0.000

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.000

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for Storm B

Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	Time (mins)	(ha)
0-4	0.550	4-8	1.336	8-12	0.030

Total Area Contributing (ha) = 1.916

Total Pipe Volume $(m^3) = 78.139$

Network Design Table for Storm B

PN	_		-	I.Area							Section T		Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (L/s)	(mm)	SECT	(mm)		D	esign
S_B1.000	69.323	0.347	200.0	0.201	4.00	-	16.3	0.600	0	300	Pipe/Cond	uit	₩
S_B1.001	29.978	0.150	200.0	0.119	0.00		0.0	0.600	0	300	Pipe/Cond	uit	•
S_B2.000	66.659	0.333	200.0	0.205	4.00		0.0	0.600	0	225	Pipe/Cond	uit	ð
S_B2.001	9.787	0.049	200.0	0.000	0.00		0.0	0.600	0	225	Pipe/Cond	uit	ď
S_B3.000	26.879	0.134	200.0	0.069	4.00		0.0	0.600	0	225	Pipe/Cond	uit	0

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)				Cap (1/s)	Flow (1/s)
S B1.000	50.00	5.04	28.050	0.201	16.3	0.0	8.7	1.11	78.3	52.2
s_B1.001	50.00	5.49	27.703	0.320	16.3	0.0	11.9	1.11	78.3	71.5
S B2.000	50.00	5.21	27.950	0.205	0.0	0.0	5.6	0.92	36.6	33.3
s_B2.001	50.00	5.38	27.617	0.205	0.0	0.0	5.6	0.92	36.6	33.3
S_B3.000	50.00	4.49	28.050	0.069	0.0	0.0	1.9	0.92	36.6	11.2
				@1000 OC	10 T					

Waterman Moylan	Page 2	
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	nialilade
Micro Drainage	Network 2018.1.1	

Network Design Table for Storm_B

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S_B2.002 S_B2.003				0.045	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	o r
S_B1.002	87.337	2.360	37.0	0.312	0.00	0.0	0.600	0	375	Pipe/Conduit	₫*
S_B1.003	15.506	0.345	45.0	0.015	0.00	0.0	0.600	0	375	Pipe/Conduit	Ġ
S_B1.004	24.809	0.124	200.0	0.023	0.00	0.0	0.600	0	450	Pipe/Conduit	<u>-</u>
S_B1.005	28.454	0.142	200.0	0.052	0.00	0.0	0.600	0	450	Pipe/Conduit	•
S B4.000	52.475	1.749	30.0	0.149	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S B4.001	55.491	1.850	30.0	0.208	0.00	0.0	0.600	0	225	Pipe/Conduit	ŏ
S B4.002	32.877	0.996	33.0	0.033	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S B4.003	29.408	0.147	200.0	0.021	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
S B4.004	60.740	0.304	200.0	0.146	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S B4.005	35.772	0.179	200.0	0.021	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
S_B4.006	80.695	0.403	200.0	0.214	0.00	0.0	0.600	0		Pipe/Conduit	•
S B1.006	18.875	0.126	150.0	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	€
S_B1.007	48.991	0.327	150.0	0.000	0.00	0.0	0.600	0		Pipe/Conduit	•

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S B2.002	50.00	5.64	27.493	0.320	0.0	0.0	8.7	1.11	78.3	51.9
S_B2.003	50.00	6.50	27.408	0.402	0.0	0.0	10.9	1.11	78.3	65.4
S B1.002	50.00	6 99	27.047	1.034	16.3	0.0	31.3	2 99	329.9	187 5
S B1.003	50.00		24.687	1.049	16.3	0.0	31.7			190.0
S_B1.003	50.00		24.267	1.072	16.3	0.0	32.3		228.1	
_	50.00		24.207	1.124	16.3	0.0	33.7		228.1	
S_B1.005	30.00	7.70	24.143	1.124	10.3	0.0	33.7	1.43	220.1	202.1
S B4.000	50.00	4.36	30.300	0.149	0.0	0.0	4.0	2.40	95.3	24.3
S B4.001	50.00	4.75	28.551	0.357	0.0	0.0	9.7	2.40	95.3	58.0
S B4.002	50.00	4.99	26.701	0.390	0.0	0.0	10.6	2.29	90.9	63.4
S B4.003	50.00	5.43	25.630	0.412	0.0	0.0	11.1	1.11	78.3	66.9
S B4.004	50.00		25.408	0.558	0.0	0.0	15.1		141.1	90.6
S B4.005	50.00		25.104	0.578	0.0	0.0	15.7		141.1	94.0
S_B4.005 S B4.006	50.00		24.925	0.793	0.0	0.0	21.5		141.1	128.8
5_84.006	30.00	7.74	24.923	0.793	0.0	0.0	21.5	1.20	141.1	120.0
S B1.006	50.00	7.92	23.926	1.916	16.3	0.0	55.2	1.83	395.4	330.9
S_B1.007	50.00	8.36	23.800	1.916	16.3	0.0	55.2	1.83	395.4	330.9

Waterman Moylan							
Marine House	18-014						
Clanwilliam Place	Rathmullan						
Dublin 2 Ireland	Drainage Calculations	Micro					
Date 11/06/2019	Designed by BW	Drainage					
File MICRODRAINAGE.MDX	Checked by JG	Dialilade					
Micro Drainage	Network 2018.1.1						

Manhole Schedules for Storm_B

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)		Diameter (mm)	Backdı (mm)
S B1	31.150	3.100	Open	Manhole	1200	S B1.000	28.050	300					
S_B2				Manhole	1200	S_B1.001	27.703	300	S_B1.000	27.	703	300	
S_B3	29.400	1.450	Open	Manhole	1200	S_B2.000	27.950	225	_				
S_B4	29.850	2.233	Open	Manhole	1200	S_B2.001	27.617	225	S_B2.000	27.	617	225	
S_B5	29.500	1.450	Open	Manhole	1200	S_B3.000	28.050	225					
S_B6	29.900	2.407	Open	Manhole	1200	S_B2.002	27.493	300	S_B2.001	27.	568	225	
									S_B3.000	27.	916	225	3
S_B7	30.000	2.592	Open	Manhole	1200	S_B2.003	27.408	300	S_B2.002	27.	408	300	
S_B8	30.600	3.553	Open	Manhole	1350	S_B1.002	27.047	375	S_B1.001	27.	553	300	4
									S_B2.003	27.	122	300	
S_B9	26.300	1.613	Open	Manhole	1350	S_B1.003	24.687	375	S_B1.002	24.	687	375	
S_B10	26.000	1.733	Open	Manhole	1350	S_B1.004	24.267	450	S_B1.003	24.	342	375	
S_B11	27.150	3.007	Open	Manhole	1350	S_B1.005	24.143	450	S_B1.004	24.	143	450	
S_B12	31.800	1.500	Open	Manhole	1200	S_B4.000	30.300	225					
S_B13	30.000	1.449	Open	Manhole	1200	S_B4.001	28.551	225	S_B4.000	28.	551	225	
S_B14	28.400	1.699	Open	Manhole	1200	S_B4.002	26.701	225	S_B4.001	26.	701	225	
S_B15	27.150	1.520	Open	Manhole	1200	S_B4.003	25.630	300	S_B4.002	25.	705	225	
S_B16	29.150	3.742	Open	Manhole	1350	S_B4.004	25.408	375	S_B4.003	25.	483	300	
S_B17	27.800	2.696	Open	Manhole	1350	S_B4.005	25.104	375	S_B4.004	25.	104	375	
S_B18	28.150	3.225	Open	Manhole	1350	S_B4.006	24.925	375	S_B4.005	24.	925	375	
S_B19	27.750	3.824	Open	Manhole	1500	S_B1.006	23.926	525	S_B1.005	24.	001	450	
									S_B4.006	24.	522	375	4
S_B20	27.000	3.200	Open	Manhole	1500	S_B1.007	23.800	525	S_B1.006	23.	800	525	
S_B9	25.750	2.277	Open	Manhole	1500		OUTFALL		S_B1.007	23.	473	525	

Waterman Moylan		Page 4
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PIPELINE SCHEDULES for Storm_B

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S B1.000	0	300	S B1	31.150	28.050	2.800	Open Manhole	1200
S_B1.001	0	300	S_B2	30.700	27.703	2.697	Open Manhole	1200
S B2.000	0	225	s B3	29.400	27.950	1.225	Open Manhole	1200
S_B2.001	0	225	S_B4	29.850	27.617	2.008	Open Manhole	1200
S_B3.000	0	225	S_B5	29.500	28.050	1.225	Open Manhole	1200
S_B2.002	0	300	S_B6	29.900	27.493	2.107	Open Manhole	1200
S_B2.003	0	300	s_B7	30.000	27.408	2.292	Open Manhole	1200
S_B1.002	0	375	S_B8	30.600	27.047	3.178	Open Manhole	1350
S_B1.003	0	375	S_B9	26.300	24.687	1.238	Open Manhole	1350
S_B1.004	0	450	S_B10	26.000	24.267	1.283	Open Manhole	1350
S_B1.005	0	450	S_B11	27.150	24.143	2.557	Open Manhole	1350
S_B4.000	0	225	S_B12	31.800	30.300	1.275	Open Manhole	1200
S_B4.001	0	225	S_B13	30.000	28.551	1.224	Open Manhole	1200
S B4.002	0	225	S B14	28.400	26.701	1.474	Open Manhole	1200
S B4.003	0	300	S B15	27.150	25.630	1.220	Open Manhole	1200
S_B4.004	0	375	S_B16	29.150	25.408	3.367	Open Manhole	1350

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S_B1.000	69.323	200.0	S_B2	30.700	27.703	2.697	Open Manhole	1200
S_B1.001	29.978	200.0	S_B8	30.600	27.553	2.747	Open Manhole	1350
S B2.000	66.659	200.0	S B4	29.850	27.617	2.008	Open Manhole	1200
S_B2.001	9.787	200.0	s_B6	29.900	27.568	2.107	Open Manhole	1200
S B3.000	26.879	200.0	S B6	29.900	27.916	1.759	Open Manhole	1200
_			_					
S_B2.002	17.029	200.0	S_B7	30.000	27.408	2.292	Open Manhole	1200
S_B2.003	57.099	200.0	S_B8	30.600	27.122	3.178	Open Manhole	1350
S_B1.002	87.337	37.0	S_B9	26.300	24.687	1.238	Open Manhole	1350
S_B1.003	15.506	45.0	S_B10	26.000	24.342	1.283	Open Manhole	1350
S_B1.004	24.809	200.0	S_B11	27.150	24.143	2.557	Open Manhole	1350
S_B1.005	28.454	200.0	S_B19	27.750	24.001	3.299	Open Manhole	1500
S_B4.000	52.475	30.0	S_B13	30.000	28.551	1.224	Open Manhole	1200
S_B4.001	55.491	30.0	S_B14	28.400	26.701	1.474	Open Manhole	1200
S_B4.002	32.877	33.0	S_B15	27.150	25.705	1.220	Open Manhole	1200
S_B4.003	29.408	200.0	S_B16	29.150	25.483	3.367	Open Manhole	1350
S_B4.004	60.740	200.0	S_B17	27.800	25.104	2.321	Open Manhole	1350
				©1982-2	2018 Tni	10VVZE		

Waterman Moylan							
Marine House	18-014						
Clanwilliam Place	Rathmullan						
Dublin 2 Ireland	Drainage Calculations	Micro					
Date 11/06/2019	Designed by BW	Drainage					
File MICRODRAINAGE.MDX	Checked by JG	Dialilade					
Micro Drainage	Network 2018.1.1						

PIPELINE SCHEDULES for Storm_B

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S_B4.005	0	375	S_B17	27.800	25.104	2.321	Open Manhole	1350
S B4.006	0	375	S B18	28.150	24.925	2.850	Open Manhole	1350
_			_					
S B1.006	0	525	S B19	27.750	23.926	3.299	Open Manhole	1500
_			_				-	
S_B1.007	0	525	S_B20	27.000	23.800	2.675	Open Manhole	1500

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
_			_				Open Manhole Open Manhole	1350 1500
S_B1.006 S B1.007			_				Open Manhole Open Manhole	1500 1500

Waterman Moylan		Page 1
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	pramage
Micro Drainage	Network 2018.1.1	•

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm C

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 5 PIMP (%) 100

M5-60 (mm) 16.500 Add Flow / Climate Change (%) 20

Ratio R 0.300 Minimum Backdrop Height (m) 0.000

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.000

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for Storm C

Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	(mins)	(ha)
				8-12	

Total Area Contributing (ha) = 3.723

Total Pipe Volume $(m^3) = 146.536$

Network Design Table for Storm C

ype Auto Desig	Section Type		HYD SECT				I.Area (ha)	-		Length (m)	PN
uit 👸	Pipe/Conduit	225	0	0.600	0.0	4.00	0.210	45.0	1.178	53.011	s_c3.000
	Pipe/Conduit Pipe/Conduit			0.600		4.00					S_C4.000 S_C4.001
uit 👸	Pipe/Conduit	225	0	0.600	0.0	4.00	0.107	200.0	0.213	42.695	s_C5.000

Network Results Table

PN	Rain (mm/hr)		•		Σ Base Flow (1/s)				Cap (1/s)	
s_C3.000	50.00	4.45	30.000	0.210	0.0	0.0	5.7	1.96	77.7	34.1
S_C4.000 S_C4.001	50.00		28.350 28.136	0.167 0.175	0.0	0.0			36.6 36.6	
s_c5.000	50.00	4.77	28.600	0.107	0.0	0.0	2.9	0.92	36.6	17.4

Waterman Moylan		Page 2
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	niailiade
Micro Drainage	Network 2018.1.1	

Network Design Table for Storm_C

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E.	se (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
s_C4.002	12.661	0.063	200.0	0.012	0.00	0.0	0.600	0	300	Pipe/Conduit	•
S_C3.001 S_C3.002				0.032 0.214	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	6
s_C6.000 s_C6.001				0.165 0.115	4.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit	1
s_c3.003	62.650	0.313	200.0	0.209	0.00	0.0	0.600	0	450	Pipe/Conduit	•
s_C7.000 s_C7.001				0.180 0.127	4.00		0.600	0		Pipe/Conduit Pipe/Conduit	1
s_c3.004	8.304	0.042	200.0	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	•
s_C8.000	49.411	0.247	200.0	0.225	4.00	0.0	0.600	0	300	Pipe/Conduit	•
s_C9.000 s_C9.001				0.106 0.112	4.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit	0
s_C10.000 s_C10.001				0.054 0.118	4.00 0.00		0.600	0		Pipe/Conduit Pipe/Conduit	0

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S_C4.002	50.00	5.23	27.987	0.294	0.0	0.0	8.0	1.11	78.3	47.8	
s_c3.001 s_c3.002	50.00		27.849 27.743	0.536 0.750	0.0	0.0	14.5 20.3		141.1 366.8		
s_C6.000 s_C6.001	50.00		24.450 24.096	0.165 0.280	0.0	0.0	4.5 7.6	0.92	36.6 78.3		
s_c3.003	50.00	6.57	23.668	1.239	0.0	0.0	33.6	1.43	228.1	201.3	
s_c7.000 s_c7.001	50.00		23.550 23.176	0.180 0.307	0.0	0.0	4.9 8.3	0.92 1.11	36.6 78.3	29.3 49.9	
S_C3.004	50.00	6.66	22.651	1.546	0.0	0.0	41.9	1.58	342.1	251.3	
s_C8.000	50.00	4.74	22.800	0.225	0.0	0.0	6.1	1.11	78.3	36.6	
s_C9.000 s_C9.001	50.00		23.600 23.425	0.106 0.218	0.0	0.0	2.9 5.9	0.92	36.6 36.6	17.2 35.5	
s_c10.000 s_c10.001	50.00		23.600 23.371	0.054 0.172	0.0	0.0	1.5 4.7	0.92	36.6 78.3	8.8 28.0	
			(01982-20	18 Innovyz	ze					

Waterman Moylan		Page 3
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

Network Design Table for Storm_C

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)		HYD SECT	DIA (mm)	Section Type	Auto Design
s_C9.002	43.242	0.216	200.0	0.100	0.00	0.0	0.600	0	375	Pipe/Conduit	•
s_C8.001	56.612	0.283	200.0	0.239	0.00	0.0	0.600	0	450	Pipe/Conduit	₫*
s_c3.005	70.665	0.353	200.0	0.138	0.00	0.0	0.600	0	600	Pipe/Conduit	•
s_c11.000				0.138	4.00		0.600	0		Pipe/Conduit	ð
S_C11.001 S C11.002			30.0	0.171 0.235	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	₫"
s_C11.002 s_C11.003				0.194	0.00		0.600	0		Pipe/Conduit	9
s_c12.000	72.904	0.486	150.0	0.167	4.00	0.0	0.600	0	225	Pipe/Conduit	0
s_c3.006	55.576	0.278	200.0	0.116	0.00	0.0	0.600	0	675	Pipe/Conduit	•
s_c13.000	14.750	0.074	200.0	0.063	4.00	0.0	0.600	0	225	Pipe/Conduit	0
s c3.007	7.317	0.037	200.0	0.000	0.00	0.0	0.600	0	675	Pipe/Conduit	₽
s_c3.008				0.000	0.00		0.600	0		Pipe/Conduit	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
s_c9.002	50.00	6.01	23.009	0.491	0.0	0.0	13.3	1.28	141.1	79.8	
s_c8.001	50.00	6.67	22.403	0.955	0.0	0.0	25.9	1.43	228.1	155.2	
s_c3.005	50.00	7.36	21.970	2.640	0.0	0.0	71.5	1.72	485.8	428.9	
S_C11.000 S_C11.001 S_C11.002 S_C11.003	50.00 50.00 50.00 50.00	4.92 5.41	30.200 29.827 29.482 27.013	0.138 0.309 0.544 0.738	0.0 0.0 0.0	0.0 0.0 0.0	3.7 8.4 14.7 20.0	1.31 1.31 2.40 3.53	52.0 52.0 95.3 249.6	22.4 50.2 88.4 119.9	
s_c12.000	50.00	5.14	24.100	0.167	0.0	0.0	4.5	1.07	42.4	27.1	
s_c3.006	50.00	7.86	21.542	3.660	0.0	0.0	99.1	1.85	661.9	594.8	
s_c13.000	50.00	4.27	22.900	0.063	0.0	0.0	1.7	0.92	36.6	10.3	
s_C3.007 s_C3.008	50.00 50.00		21.264 21.227	3.723 3.723	0.0	0.0	100.8		661.9 661.9		

Waterman Moylan		Page 4
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

Manhole Schedules for Storm_C

							_					
MH Name	MH CL (m)	MH Depth (m)	Conr	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter	Bacl (1
s_C1	31.500	1.500	Open	Manhole	1200	s_C3.000	30.000	225				
S_C2	29.850	1.500	Open	Manhole	1200	s_C4.000	28.350	225				
S_C3	30.200	2.064	Open	Manhole	1200	S_C4.001	28.136	225	S_C4.000	28.13	5 225	
S_C4	30.100	1.500	Open	Manhole	1200	s_C5.000	28.600	225				
S_C5	30.400	2.413	Open	Manhole	1200	S_C4.002	27.987	300	S_C4.001	28.06	2 225	
									s_C5.000	28.38	7 225	
s_c6	30.450	2.601	Open	Manhole	1350	s_c3.001	27.849	375	s_c3.000	28.82	2 225	
									S_C4.002	27.92	300	
s_c7	29.850	2.107	Open	Manhole	1350	s_c3.002	27.743	375	s_c3.001	27.74	3 375	
s_c8	25.950	1.500	Open	Manhole	1200	s_c6.000	24.450	225				
S_C9	26.850	2.754	Open	Manhole	1200	s_C6.001	24.096	300	s_c6.000	24.17	1 225	
S_C10	27.550	3.882	Open	Manhole	1350	s_c3.003	23.668	450	s_c3.002	25.71	1 375	
									s_C6.001	23.81	300	
S_C11	25.050	1.500	Open	Manhole	1200	s_c7.000	23.550	225				
S_C12	25.450	2.274	Open	Manhole	1200	s_c7.001	23.176	300	s_c7.000	23.25	1 225	
S_C13	25.850	3.199	Open	Manhole	1500	s_c3.004	22.651	525	s_c3.003	23.35	5 450	
									s_c7.001	22.87	300	
S_C14	24.300	1.500	Open	Manhole	1200	s_C8.000	22.800	300				
S_C15	24.900	1.300	Open	Manhole	1200	s_C9.000	23.600	225				
S_C16	24.650	1.225	Open	Manhole	1200	s_C9.001	23.425	225	s_C9.000	23.42	5 225	
S_C17	25.080	1.480	Open	Manhole	1200	s_c10.000	23.600	225				
S_C18	25.750	2.379	Open	Manhole	1200	s_C10.001	23.371	300	s_c10.000	23.44	5 225	
S_C19	25.400	2.391	Open	Manhole	1350	s_C9.002	23.009	375	s_C9.001	23.20	225	
									s_c10.001	23.08	300	
S_C20	25.050	2.647	Open	Manhole	1350	s_C8.001	22.403	450	s_C8.000	22.55	300	
									s_C9.002	22.79	2 375	
S_C21	25.600	3.630	Open	Manhole	1500	s_c3.005	21.970	600	s_c3.004	22.61	525	
									S_C8.001	22.12	3 450	
S_C22	31.700	1.500	Open	Manhole	1200	s_C11.000	30.200	225				
S_C23	31.350	1.523	Open	Manhole	1200	s_C11.001	29.827	225	s_C11.000	29.82	7 225	
S_C24	30.950	1.468	Open	Manhole	1200	s_C11.002	29.482	225	s_C11.001	29.48	2 225	
S_C25	28.700	1.687	Open	Manhole	1200	s_C11.003	27.013	300	s_C11.002	27.08	3 225	
S_C26	25.600	1.500	Open	Manhole	1200	s_C12.000	24.100	225				
S_C27	25.100	3.558	Open	Manhole	1500	s_c3.006	21.542	675	s_c3.005	21.61	7 600	
									s_c11.003	23.42	2 300	
									s_C12.000	23.61	225	
S_C28	24.350	1.450	Open	Manhole	1200	s_C13.000	22.900	225				
S_C29	24.550	3.286	Open	Manhole	1500	s_c3.007	21.264	675	s_c3.006	21.26	4 675	
					©1982-2	018 Innov	yze					

Waterman Moylan		Page 5
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

Manhole Schedules for Storm_C

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN Invert		Pipe Out Invert Diameter Level (m) (mm)		Pipes In Invert Level (m)	Diameter (mm)	Backe (m
								s_C13.000	22.826	225	
s_C30	24.600	3.373	Open Manhole	1500	s_c3.008	21.227	675	s_c3.007	21.227	675	
s_c	24.800	3.901	Open Manhole	0		OUTFALL		s_c3.008	20.899	675	

Waterman Moylan		Page 6
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	niairiade
Micro Drainage	Network 2018.1.1	

PIPELINE SCHEDULES for Storm_C

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W	
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)	
s_c3.000	0	225	S_C1	31.500	30.000	1.275	Open Manhole	1200	
S_C4.000 S_C4.001	0		_	29.850 30.200			Open Manhole Open Manhole		
s_C5.000	0	225	S_C4	30.100	28.600	1.275	Open Manhole	1200	
S_C4.002	0	300	S_C5	30.400	27.987	2.113	Open Manhole	1200	
s_c3.001 s_c3.002	0			30.450 29.850			Open Manhole Open Manhole		
s_C6.000 s_C6.001	0		_	25.950 26.850			Open Manhole Open Manhole		
s_c3.003	0	450	s_C10	27.550	23.668	3.432	Open Manhole	1350	
s_c7.000 s_c7.001	0		_	25.050 25.450			Open Manhole Open Manhole		
s_c3.004	0	525	s_c13	25.850	22.651	2.674	Open Manhole	1500	

Downstream Manhole

PN	-	-				-	МН	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
s_c3.000	53.011	45.0	s_c6	30.450	28.822	1.403	Open Manhole	1350
S_C4.000 S C4.001							Open Manhole Open Manhole	
s c5.000			_				Open Manhole	
_ S_C4.002	12.661	200.0	_ S_C6	30.450	27.924	2.226	Open Manhole	1350
s_c3.001			_				Open Manhole	
S_C3.002			_				Open Manhole	
S_C6.000 S_C6.001			_				Open Manhole Open Manhole	
s_c3.003	62.650	200.0	s_C13	25.850	23.355	2.045	Open Manhole	1500
s_c7.000			_				Open Manhole	
s_c7.001	59.880	200.0	S_C13	∠5.850	22.876	2.6/4	Open Manhole	1500
S_C3.004	8.304	200.0	s_C21	25.600	22.610	2.465	Open Manhole	1500
				©1982-2	2018 In:	novyze		

Waterman Moylan	Page 7	
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PIPELINE SCHEDULES for Storm_C

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
s C8.000		300	c C1/	24 300	22 900	1 200	Open Manhole	1200
_			_					
S_C9.000 S C9.001	0		_	24.900 24.650			Open Manhole Open Manhole	
_			_					
S_C10.000			_				Open Manhole	
s_C10.001	0	300	S_C18	25.750	23.371	2.079	Open Manhole	1200
S_C9.002	0	375	S_C19	25.400	23.009	2.016	Open Manhole	1350
S_C8.001	0	450	S_C20	25.050	22.403	2.197	Open Manhole	1350
s_c3.005	0	600	S_C21	25.600	21.970	3.030	Open Manhole	1500
s c11.000	0	225	S C22	31.700	30.200	1.275	Open Manhole	1200
s C11.001	0		_	31.350			Open Manhole	1200
s C11.002	0	225	s C24	30.950	29.482	1.243	Open Manhole	1200
s_c11.003	0		_	28.700			Open Manhole	1200
S_C12.000	0	225	S_C26	25.600	24.100	1.275	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
c co 000	10 111	200 0	g G20	25 050	22 552	2 107	Open Manhole	1350
5_00.000	49.411	200.0	5_020	23.030	22.333	2.197	Open Mannore	1330
s c9.000	34.981	199.9	s C16	24.650	23.425	1.000	Open Manhole	1200
s_c9.001	45.005	200.0	s_C19	25.400	23.200	1.975	Open Manhole	1350
S_C10.000						2.079	Open Manhole	1200
S_C10.001	57.482	200.0	S_C19	25.400	23.084	2.016	Open Manhole	1350
S_C9.002	43.242	200.0	s_C20	25.050	22.792	1.883	Open Manhole	1350
S C8.001	56 612	200 0	c c21	25 600	22 120	2 020	Open Manhole	1500
3_00.001	30.012	200.0	3_021	23.000	22.120	3.030	Open Mannore	1300
s c3.005	70.665	200.0	s C27	25.100	21.617	2.883	Open Manhole	1500
_			_				1	
S_C11.000	37.347	100.0	S_C23	31.350	29.827	1.298	Open Manhole	1200
S C11.001	34.488	100.0	S C24	30.950	29.482	1.243	Open Manhole	1200
S C11.002	71.812	30.0	S C25	28.700	27.088	1.387	Open Manhole	1200
s_c11.003	71.812	20.0	s_c27	25.100	23.422	1.378	Open Manhole	1500
			_					
S_C12.000	72.904	150.0	S_C27	25.100	23.614	1.261	Open Manhole	1500
				-1000				
				©1982-2	018 Inn	ovvze		

Waterman Moylan	Page 8	
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PIPELINE SCHEDULES for Storm_C

<u>Upstream Manhole</u>

PN	-		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
		(/		(,	ν,	(/	00000_0	ν,
s_c3.006	0	675	s_C27	25.100	21.542	2.883	Open Manhole	1500
s_C13.000	0	225	S_C28	24.350	22.900	1.225	Open Manhole	1200
s_c3.007	0	675	S_C29	24.550	21.264	2.611	Open Manhole	1500
S_C3.008	0	675	S_C30	24.600	21.227	2.698	Open Manhole	1500

<u>Downstream Manhole</u>

PN	Length (m)	-	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
s_c3.006	55.576	200.0	S_C29	24.550	21.264	2.611	Open Manhole	1500
s_C13.000	14.750	200.0	S_C29	24.550	22.826	1.499	Open Manhole	1500
s_c3.007 s c3.008			_				Open Manhole Open Manhole	1500 0

Waterman Moylan		Page 1
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	pramage
Micro Drainage	Network 2018.1.1	•

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm D

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 5 PIMP (%) 100

M5-60 (mm) 16.500 Add Flow / Climate Change (%) 20

Ratio R 0.300 Minimum Backdrop Height (m) 0.000

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.000

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for Storm D

Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	(mins)	(ha)
0-4	0.447	4-8	0.843	8-12	0.027

Total Area Contributing (ha) = 1.317

Total Pipe Volume $(m^3) = 56.789$

Network Design Table for Storm D

PN	Length (m)	Fall (m)	Slope (1:X)			Base Flow (1/		k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S_D1.000 S_D1.001					4.00			0.600			Pipe/Conduit Pipe/Conduit	_
S_D2.000	37.282	0.746	50.0	0.070	4.00	0	.0	0.600	0	225	Pipe/Conduit	ð
S_D1.002 S_D1.003				0.009 0.087	0.00			0.600	0		Pipe/Conduit Pipe/Conduit	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)				Cap (1/s)	
s_D1.000	50.00	4.41	23.000	0.134	8.8	0.0	5.4	1.69	67.3	32.3
S_D1.001	50.00	4.73	20.800	0.134	26.1	0.0	8.8	1.11	78.3	53.0
S_D2.000	50.00	4.34	22.800	0.070	0.0	0.0	1.9	1.85	73.7	11.3
S D1.002	50.00	4.99	20.692	0.212	26.1	0.0	11.0	1.11	78.3	65.8
S_D1.003	50.00	5.45	20.604	0.300	26.1	0.0	13.3	1.28	90.6	80.0
				a1000 00	110 T					

Waterman Moylan		Page 2
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

Network Design Table for Storm_D

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S_D1.004	27.800	0.927	30.0	0.033	0.00	0.0	0.600	0	300	Pipe/Conduit	•
s_D3.000	24.599	1.230	20.0	0.029	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S_D4.000	23.815	0.794	30.0	0.034	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
s D3.001	71.118	2.371	30.0	0.151	0.00	0.0	0.600	0	225	Pipe/Conduit	€
S D3.002				0.131	0.00		0.600	0		Pipe/Conduit	8
s D3.003	6.938	0.023	300.0	0.000	0.00	0.0	0.600	0		Pipe/Conduit	ď
S D3.004				0.000	0.00	0.0	0.600	0		Pipe/Conduit	8
s_D3.005	11.009	0.037	300.0	0.018	0.00	0.0	0.600	0		Pipe/Conduit	•
s_D1.005	20.241	0.067	300.0	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	•
S D5.000	58.921	0.982	60.0	0.212	4.00	0.0	0.600	0	225	Pipe/Conduit	€
s_D5.001				0.000	0.00	0.0	0.600	0		Pipe/Conduit	•
s_D6.000	32.133	0.161	200.0	0.035	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S D5.002	24.392	0.244	100.0	0.068	0.00	0.0	0.600	0	225	Pipe/Conduit	€
s D5.003				0.076	0.00		0.600	0		Pipe/Conduit	
S_D5.004	66.232	0.221	300.0	0.081	0.00	0.0	0.600	0		Pipe/Conduit	8

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S_D1.004	50.00	5.61	20.371	0.333	26.1	0.0	14.2	2.88	203.7	85.5	
s_D3.000	50.00	4.14	22.050	0.029	0.0	0.0	0.8	2.94	116.9	4.7	
S_D4.000	50.00	4.17	21.650	0.034	0.0	0.0	0.9	2.40	95.3	5.5	
S D3.001	50.00	4.66	20.820	0.214	0.0	0.0	5.8	2.40	95.3	34.8	
S D3.002	50.00		18.449	0.345	0.0	0.0	9.4		73.7	56.1	
s D3.003	50.00	5.24	17.378	0.345	0.0	0.0	9.4	0.90	63.8	56.1	
S D3.004	50.00	5.79	17.355	0.345	0.0	0.0	9.4	0.90	63.8	56.1	
s_D3.005	50.00	6.00	17.254	0.364	0.0	0.0	9.8	0.90	63.8	59.1	
S_D1.005	50.00	6.28	17.067	0.697	26.1	0.0	24.1	1.17	185.8	144.6	
S D5.000	50.00	4.58	23.300	0.212	0.0	0.0	5.7	1.69	67.3	34.4	
s_D5.001	50.00	5.16	22.318	0.212	0.0	0.0	5.7	1.69	67.3	34.4	
S_D6.000	50.00	4.58	21.000	0.035	0.0	0.0	1.0	0.92	36.6	5.8	
S D5.002	50.00	5.47	20.839	0.316	0.0	0.0	8.5	1.31	52.0	51.3	
S D5.003	50.00	5.90	20.595	0.392	0.0	0.0	10.6	1.85	73.7	63.6	
S_D5.004	50.00	6.96	19.494	0.472	0.0	0.0	12.8	1.04	115.0	76.7	
				©1982-20	18 Innovy	ze					

Waterman Moylan		Page 3
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

Network Design Table for Storm_D

PN	Length (m)		-	I.Area (ha)				HYD SECT		Section Type	Auto Design
S_D5.005	56.544	0.188	300.0	0.147	0.00	0.0	0.600	0	375	Pipe/Conduit	•
S_D1.006 S_D1.007					0.00		0.600			Pipe/Conduit Pipe/Conduit	_

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S_D5.005	50.00	7.87	19.273	0.620	0.0	0.0	16.8	1.04	115.0	100.7
S_D1.006	50.00	7.92	16.925	1.317	26.1	0.0	40.9	1.29	278.8	245.3
S_D1.007	50.00	8.51	16.912	1.317	26.1	0.0	40.9	1.29	278.8	245.3

Waterman Moylan		Page 4
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	1

Manhole Schedules for Storm_D

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdı (mm)
S D1	25.000	2.000	Open	Manhole	1200	S D1.000	23.000	225				
_	23.900			Manhole		S D1.001	20.800		S D1.000	22.313	225	14
_	24.300		-	Manhole		S D2.000	22.800	225	_			
_	23.500		Open	Manhole		S D1.002	20.692		S D1.001	20.692	300	
_						_			S D2.000	22.054	225	12
S_D5	23.000	2.396	Open	Manhole	1200	S_D1.003	20.604	300	S_D1.002	20.604	300	
S_D6	21.900	1.529	Open	Manhole	1200	S_D1.004	20.371	300	s_D1.003	20.371	300	
S_D7	23.500	1.450	Open	Manhole	1200	S_D3.000	22.050	225				
S_D8	23.250	1.600	Open	Manhole	1200	S_D4.000	21.650	225				
S_D9	22.300	1.480	Open	Manhole	1200	S_D3.001	20.820	225	S_D3.000	20.820	225	
									S_D4.000	20.856	225	
_				Manhole	1200	S_D3.002	18.449	225	S_D3.001	18.449	225	
S_D11	18.750	1.372	Open	Manhole	1200	S_D3.003	17.378	300	S_D3.002	17.453	225	
_	19.500			Manhole	1200	S_D3.004	17.355	300	S_D3.003	17.355	300	
_	20.500	3.246	Open	Manhole	1200	S_D3.005	17.254	300	S_D3.004	17.254	300	
S_D14	21.000	3.933	Open	Manhole	1350	S_D1.005	17.067	450	S_D1.004	19.445	300	22
									S_D3.005	17.217	300	
_			_	Manhole		S_D5.000	23.300	225				
_	23.850		_	Manhole		S_D5.001	22.318	225	S_D5.000	22.318	225	
S_D17	22.450		*	Manhole		S_D6.000	21.000	225				
S_D18	22.950	2.111	Open	Manhole	1200	S_D5.002	20.839	225	S_D5.001	21.336	225	4
									S_D6.000	20.839	225	
_	22.350			Manhole		S_D5.003	20.595		S_D5.002	20.595	225	
-	21.000			Manhole		S_D5.004	19.494		S_D5.003	19.644	225	
S_D21		3.477	-	Manhole		S_D5.005	19.273		S_D5.004	19.273	375	
S_D22	21.800	4.875	Open	Manhole	1500	S_D1.006	16.925	525	S_D1.005	17.000	450	
2 500	01 550	4 000			4.500	0 01 00-	10010		S_D5.005	19.085	375	20
_			_	Manhole		S_D1.007	16.912	525	S_D1.006	16.912	525	
S_D	22.750	5.990	Open	Manhole	0		OUTFALL		s_D1.007	16.760	525	

Waterman Moylan		Page 5
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PIPELINE SCHEDULES for Storm_D

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)		MH nection	МН	DIAM., (mm)	L*W
	sect	(111111)	Name	(111)	(111)	(111)	Com	iection		(111111)	
S D1.000	0	225	S D1	25.000	23.000	1.775	Open	Manhole		1	L200
S_D1.001	0	300	s_D2	23.900	20.800	2.800	Open	Manhole		1	L200
S_D2.000	0	225	S_D3	24.300	22.800	1.275	Open	Manhole		1	L200
S D1.002	0	300	S D4	23.500	20.692	2.508	Open	Manhole		1	L200
s D1.003	0	300	s D5	23.000	20.604	2.096	Open	Manhole		1	L200
S_D1.004	0	300	s_D6	21.900	20.371	1.229	Open	Manhole		1	L200
s_D3.000	0	225	S_D7	23.500	22.050	1.225	Open	Manhole		1	L200
S_D4.000	0	225	S_D8	23.250	21.650	1.375	Open	Manhole		1	L200
S D3.001	0	225	S D9	22.300	20.820	1.255	Open	Manhole		1	1200
S D3.002	0		s D10	20.200	18.449		-	Manhole		1	L200
s D3.003	0		s D11				-	Manhole		1	L200
s D3.004	0	300	s D12	19.500	17.355		-	Manhole			L200
s_D3.005	0		s_D13				-	Manhole			L200
S D1.005	0	450	S D14	21.000	17.067	3.483	Open	Manhole		1	1350

Downstream Manhole

PN	Length (m)	_		C.Level (m)		_	MH Connection	
S_D1.000	41.247	60.0	S_D2	23.900	22.313	1.362	Open Manhole	1200
S_D1.001	21.648	200.0	S_D4	23.500	20.692	2.508	Open Manhole	1200
S_D2.000	37.282	50.0	S_D4	23.500	22.054	1.221	Open Manhole	e 1200
S D1.002	17.460	200.0	S D5	23.000	20.604	2.096	Open Manhole	e 1200
S_D1.003	34.950	150.0	s_D6	21.900	20.371	1.229	Open Manhole	e 1200
S_D1.004	27.800	30.0	s_D14	21.000	19.445	1.255	Open Manhole	1350
S_D3.000	24.599	20.0	S_D9	22.300	20.820	1.255	Open Manhole	e 1200
S_D4.000	23.815	30.0	S_D9	22.300	20.856	1.219	Open Manhole	e 1200
S D3.001	71.118	30.0	S D10	20.200	18.449	1.526	Open Manhole	e 1200
S_D3.002	49.833	50.0	s_D11	18.750	17.453	1.072	Open Manhole	e 1200
S_D3.003	6.938	300.0	S_D12	19.500	17.355	1.845	Open Manhole	e 1200
S_D3.004	30.147	300.0	S_D13	20.500	17.254	2.946	Open Manhole	e 1200
S_D3.005	11.009	300.0	S_D14	21.000	17.217	3.483	Open Manhole	e 1350
S_D1.005	20.241	300.0	S_D22	21.800	17.000	4.350	Open Manhole	e 1500

Waterman Moylan		Page 6
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Drainage Calculations	Micro
Date 11/06/2019	Designed by BW	Drainage
File MICRODRAINAGE.MDX	Checked by JG	Dialilade
Micro Drainage	Network 2018.1.1	

PIPELINE SCHEDULES for Storm_D

<u>Upstream Manhole</u>

PN	-		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S_D5.000	0	225	S_D15	24.800	23.300	1.275	Open Manhole	1200
S_D5.001	0	225	S_D16	23.850	22.318	1.307	Open Manhole	1200
S_D6.000	0	225	S_D17	22.450	21.000	1.225	Open Manhole	1200
S_D5.002	0	225	S_D18	22.950	20.839	1.886	Open Manhole	1200
S D5.003	0	225	S D19	22.350	20.595	1.530	Open Manhole	1200
S_D5.004	0	375	S_D20	21.000	19.494	1.131	Open Manhole	1350
S_D5.005	0	375	S_D21	22.750	19.273	3.102	Open Manhole	1350
S D1.006	0	525	S D22	21.800	16.925	4.350	Open Manhole	1500
s D1.007	0	525	s D23	21.750	16.912	4.313	Open Manhole	1500

Downstream Manhole

PN	Length (m)	-	MH Name		I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
	(111)	(1.21)	Hame	(111)	(111)	(111)	Connection	(mmi)
S_D5.000	58.921	60.0	S_D16	23.850	22.318	1.307	Open Manhole	1200
S_D5.001	58.921	60.0	S_D18	22.950	21.336	1.389	Open Manhole	1200
S_D6.000	32.133	200.0	S_D18	22.950	20.839	1.886	Open Manhole	1200
S D5.002	24.392	100.0	S D19	22.350	20.595	1.530	Open Manhole	1200
S D5.003	47.574	50.0	s D20	21.000	19.644	1.131	Open Manhole	1350
S D5.004	66.232	300.0	S D21	22.750	19.273	3.102	Open Manhole	1350
s_D5.005	56.544	300.0	s_D22	21.800	19.085	2.340	Open Manhole	1500
S_D1.006	3.892	300.0	S_D23	21.750	16.912	4.313	Open Manhole	1500
S D1.007	45.672	300.0	SD	22,750	16.760	5.465	Open Manhole	0

F	Surface	Water	Attenuation	Calculations
г.	Sullace	vvalei	Auchuauon	Calculations

Waterman Moylan		Page 1
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment A Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT A.SRCX	Checked by JG	niairiade
Micro Drainage	Source Control 2018.1.1	

Half Drain Time : 477 minutes.

Storm			Max	Max	Max	Max		Max	Max	Status
Event			Level	Depth	Infiltration	Control	Σ	Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
15	min Su	mmer	29.199	0.899	0.9	25.7		26.4	550.0	O K
30	min Sur	mmer	29.513	1.213	1.2	25.7		26.4	742.2	O K
60	min Sur	mmer	29.817	1.517	1.5	25.7		26.4	928.5	O K
120	min Su	mmer	30.108	1.808	1.7	25.7		26.4	1106.6	O K
180	min Sur	mmer	30.248	1.948	1.9	25.7		26.4	1192.1	O K
240	min Sur	mmer	30.326	2.026	1.9	25.7		26.4	1239.6	O K
360	min Su	mmer	30.385	2.085	2.0	25.7		26.4	1275.9	O K
480	min Su	mmer	30.391	2.091	2.0	25.7		26.4	1279.4	O K
600	min Sur	mmer	30.384	2.084	2.0	25.7		26.4	1275.3	O K
720	min Sur	mmer	30.369	2.069	2.0	25.7		26.4	1266.0	ОК
960	min Su	mmer	30.326	2.026	1.9	25.7		26.4	1240.1	ОК
1440	min Sur	mmer	30.220	1.920	1.8	25.7		26.4	1174.8	O K
2160	min Sur	mmer	30.040	1.740	1.7	25.7		26.4	1064.7	O K
2880	min Su	mmer	29.824	1.524	1.5	25.7		26.4	932.4	O K
4320	min Sur	mmer	29.401	1.101	1.1	25.7		26.4	673.8	O K
5760	min Sur	mmer	29.100	0.800	0.8	25.7		26.4	489.8	O K
7200	min Sur	mmer	28.894	0.594	0.6	25.5		26.0	363.7	ОК
8640	min Sur	mmer	28.754	0.454	0.4	24.6		25.1	278.0	O K
10080	min Sur	mmer	28.660	0.360	0.3	23.5		23.9	220.1	O K
15	min Wi	nter	29.310	1.010	1.0	25.7		26.4	618.2	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)		
15	min	Summer	89.088	0.0	570.5	23
30	min	Summer	60.746	0.0	778.1	37
60	min	Summer	38.900	0.0	1001.3	66
120	min	Summer	24.244	0.0	1248.1	126
180	min	Summer	18.233	0.0	1407.9	184
240	min	Summer	14.867	0.0	1530.5	244
360	min	Summer	11.120	0.0	1716.8	360
480	min	Summer	9.037	0.0	1860.1	420
600	min	Summer	7.690	0.0	1978.2	484
720	min	Summer	6.737	0.0	2079.6	548
960	min	Summer	5.466	0.0	2249.1	684
1440	min	Summer	4.069	0.0	2509.7	968
2160	min	Summer	3.029	0.0	2806.9	1388
2880	min	Summer	2.455	0.0	3033.2	1792
4320	min	Summer	1.823	0.0	3378.3	2512
5760	min	Summer	1.475	0.0	3645.7	3176
7200	min	Summer	1.251	0.0	3865.2	3888
8640	min	Summer	1.094	0.0	4053.3	4576
10080	min	Summer	0.976	0.0	4218.8	5248
15	min	Winter	89.088	0.0	639.0	23

Waterman Moylan					
Marine House	18-014				
Clanwilliam Place	Rathmullan				
Dublin 2 Ireland	Catchment A Storage	Micro			
Date 11/06/2019		Drainage			
File CATCHMENT A.SRCX	Checked by JG	Dialilade			
Micro Drainage	Source Control 2018.1.1				

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
30	min W	Vinter	29.666	1.366	1.3	25.7			835.9	O K
60	min W	Vinter	30.015	1.715	1.7	25.7		26.4	1049.4	O K
120	min W	Vinter	30.346	2.046	2.0	25.7		26.4	1252.4	O K
180	min W	Vinter	30.514	2.214	2.1	25.7		26.4	1354.8	O K
240	min W	Vinter	30.612	2.312	2.2	25.7		26.5	1415.0	O K
360	min W	Vinter	30.701	2.401	2.3	25.7		27.0	1469.6	O K
480	min W	Vinter	30.718	2.418	2.3	25.7		27.1	1479.8	O K
600	min W	Vinter	30.699	2.399	2.3	25.7		27.0	1468.2	O K
720	min W	Vinter	30.680	2.380	2.3	25.7		26.9	1456.4	O K
960	min W	Vinter	30.620	2.320	2.2	25.7		26.6	1419.9	O K
1440	min W	Vinter	30.453	2.153	2.1	25.7		26.4	1317.9	O K
2160	min W	Vinter	30.167	1.867	1.8	25.7		26.4	1142.8	O K
2880	min W	Vinter	29.823	1.523	1.5	25.7		26.4	932.1	O K
4320	min W	Vinter	29.187	0.887	0.9	25.7		26.4	543.1	O K
5760	min W	Vinter	28.831	0.531	0.5	25.2		25.7	325.0	O K
7200	min W	Vinter	28.645	0.345	0.3	23.3		23.7	211.1	O K
8640	min W	Vinter	28.545	0.245	0.2	21.3		21.5	149.8	ОК
10080	min W	Vinter	28.503	0.203	0.2	19.5		19.7	124.5	O K

Storm			Rain	Flooded	Discharge	Time-Peak	
Event			(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
30	min	Winter	60.746	0.0	871.4	37	
60	min	Winter	38.900	0.0	1121.4	66	
120	min	Winter	24.244	0.0	1397.8	124	
180	min	Winter	18.233	0.0	1576.6	182	
240	min	Winter	14.867	0.0	1714.0	238	
360	min	Winter	11.120	0.0	1922.6	350	
480	min	Winter	9.037	0.0	2083.1	456	
600	min	Winter	7.690	0.0	2215.3	546	
720	min	Winter	6.737	0.0	2328.8	574	
960	min	Winter	5.466	0.0	2518.6	728	
1440	min	Winter	4.069	0.0	2810.1	1042	
2160	min	Winter	3.029	0.0	3143.7	1496	
2880	min	Winter	2.455	0.0	3397.2	1936	
4320	min	Winter	1.823	0.0	3784.0	2600	
5760	min	Winter	1.475	0.0	4083.1	3232	
7200	min	Winter	1.251	0.0	4329.0	3888	
8640	min	Winter	1.094	0.0	4539.7	4504	
10080	min	Winter	0.976	0.0	4725.5	5144	

Waterman Moylan		Page 3
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment A Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT A.SRCX	Checked by JG	Diamade
Micro Drainage	Source Control 2018.1.1	•

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region Scotland and Ireland Cv (Winter) 0.840
M5-60 (mm) 16.500 Shortest Storm (mins) 15
Ratio R 0.300 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +20

Time Area Diagram

Total Area (ha) 3.432

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.902	4	8	2.413	8	12	0.117

Waterman Moylan		Page 4
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment A Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT A.SRCX	Checked by JG	Dialilade
Micro Drainage	Source Control 2018.1.1	<u>'</u>

Model Details

Storage is Online Cover Level (m) 31.600

Infiltration Basin Structure

Invert Level (m) 28.300 Safety Factor 1.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.60 Infiltration Coefficient Side (m/hr) 0.03060

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	1020.0	0.900	1020.0	1.800	1020.0	2.700	0.0
0.100	1020.0	1.000	1020.0	1.900	1020.0	2.800	0.0
0.200	1020.0	1.100	1020.0	2.000	1020.0	2.900	0.0
0.300	1020.0	1.200	1020.0	2.100	1020.0	3.000	0.0
0.400	1020.0	1.300	1020.0	2.200	1020.0	3.100	0.0
0.500	1020.0	1.400	1020.0	2.300	1020.0	3.200	0.0
0.600	1020.0	1.500	1020.0	2.400	1020.0		
0.700	1020.0	1.600	1020.0	2.500	1020.0		
0.800	1020.0	1.700	1020.0	2.600	0.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0198-2570-2600-2570 Design Head (m) 2.600 25.7 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Surface Application Sump Available Yes Diameter (mm) 198 Invert Level (m) 28.294 Minimum Outlet Pipe Diameter (mm) 225 1800 Suggested Manhole Diameter (mm)

Control	Points	Head	(m)	Flow	(1/s)
Design Point	(Calculated)	2.	600		25.7
	Flush-Flo™	0.	749		25.7
	Kick-Flo®	1.	565		20.1
Mean Flow over	r Head Range		-		22.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100 0.200 0.300 0.400	18.6 22.4		25.5 25.7		24.4 22.7 20.4 21.5	2.200 2.400	22.6 23.7 24.7 25.7

Waterman Moylan		Page 5
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment A Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT A.SRCX	Checked by JG	Dialilade
Micro Drainage	Source Control 2018.1.1	

Hydro-Brake® Optimum Outflow Control

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) F	low (1/s)	Depth (m)	Flow (1/s)
3.000	27.5	5.000	35.1	7.000	41.3	9.000	46.7
3.500	29.6	5.500	36.8	7.500	42.7	9.500	47.9
4.000	31.6	6.000	38.4	8.000	44.1		
4.500	33.4	6.500	39.9	8.500	45.4		

Waterman Moylan		Page 1
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment B Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT B.SRCX	Checked by JG	Dialilade
Micro Drainage	Source Control 2018.1.1	

Half Drain Time : 587 minutes.

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Σ	Max Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
15	min S	Summer	24.321	0.771	0.3	11.5		11.5	305.3	ОК
30	min S	Summer	24.592	1.042	0.5	11.5		11.5	412.5	O K
60	min S	Summer	24.850	1.300	0.6	11.5		11.5	514.9	O K
120	min S	Summer	25.095	1.545	0.7	11.5		12.0	611.9	O K
180	min S	Summer	25.214	1.664	0.7	11.6		12.3	658.8	O K
240	min S	Summer	25.280	1.730	0.8	11.8		12.5	685.1	O K
360	min S	Summer	25.329	1.779	0.8	11.9		12.7	704.6	O K
480	min S	Summer	25.321	1.771	0.8	11.9		12.6	701.4	O K
600	min S	Summer	25.302	1.752	0.8	11.8		12.6	693.6	O K
720	min S	Summer	25.285	1.735	0.8	11.8		12.5	687.0	O K
960	min S	Summer	25.253	1.703	0.7	11.7		12.4	674.3	O K
1440	min S	Summer	25.187	1.637	0.7	11.5		12.2	648.1	O K
2160	min S	Summer	25.072	1.522	0.7	11.5		11.9	602.6	O K
2880	min S	Summer	24.950	1.400	0.6	11.5		11.5	554.3	O K
4320	min S	Summer	24.702	1.152	0.5	11.5		11.5	456.3	ОК
5760	min S	Summer	24.455	0.905	0.4	11.5		11.5	358.3	ОК
7200	min S	Summer	24.150	0.600	0.3	11.5		11.5	237.6	ОК
8640	min S	Summer	23.940	0.390	0.2	11.5		11.5	154.6	ОК
10080	min S	Summer	23.790	0.240	0.1	11.5		11.5	94.9	ОК
15	min V	Vinter	24.419	0.869	0.4	11.5		11.5	344.0	ОК

	Stor	m	Rain Flooded Discharge Time-		Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	89.088	0.0	319.6	23
30	min	Summer	60.746	0.0	436.1	37
60	min	Summer	38.900	0.0	558.8	66
120	min	Summer	24.244	0.0	696.1	126
180	min	Summer	18.233	0.0	786.4	186
240	min	Summer	14.867	0.0	854.6	244
360	min	Summer	11.120	0.0	958.2	362
480	min	Summer	9.037	0.0	1038.4	454
600	min	Summer	7.690	0.0	1104.8	512
720	min	Summer	6.737	0.0	1162.1	576
960	min	Summer	5.466	0.0	1257.2	706
1440	min	Summer	4.069	0.0	1403.8	984
2160	min	Summer	3.029	0.0	1567.7	1404
2880	min	Summer	2.455	0.0	1694.7	1820
4320	min	Summer	1.823	0.0	1886.3	2640
5760	min	Summer	1.475	0.0	2036.6	3456
7200	min	Summer	1.251	0.0	2158.9	4112
8640	min	Summer	1.094	0.0	2263.0	4760
10080	min	Summer	0.976	0.0	2355.8	5440
15	min	Winter	89.088	0.0	358.3	23

Waterman Moylan		Page 2
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment B Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT B.SRCX	Checked by JG	Diamage
Micro Drainage	Source Control 2018.1.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min W	inter	24.725	1.175	0.5	11.5	11.5	465.2	O K
60	min W	inter	25.021	1.471	0.6	11.5	11.7	582.7	O K
120	min W	inter	25.309	1.759	0.8	11.8	12.6	696.4	O K
180	min W	inter	25.456	1.906	0.8	12.2	13.0	754.7	O K
240	min W	inter	25.543	1.993	0.9	12.4	13.3	789.4	O K
360	min W	inter	25.627	2.077	0.9	12.6	13.5	822.4	O K
480	min W	inter	25.646	2.096	0.9	12.7	13.6	830.0	O K
600	min W	inter	25.632	2.082	0.9	12.6	13.5	824.3	O K
720	min W	inter	25.600	2.050	0.9	12.6	13.5	811.7	O K
960	min W	inter	25.546	1.996	0.9	12.4	13.3	790.2	O K
1440	min W	inter	25.443	1.893	0.8	12.2	13.0	749.6	O K
2160	min W	inter	25.255	1.705	0.8	11.7	12.4	675.3	O K
2880	min W	inter	25.057	1.507	0.7	11.5	11.8	596.8	O K
4320	min W	inter	24.667	1.117	0.5	11.5	11.5	442.4	O K
5760	min W	inter	24.185	0.635	0.3	11.5	11.5	251.3	O K
7200	min W	inter	23.825	0.275	0.1	11.5	11.5	109.0	O K
8640	min W	inter	23.622	0.072	0.0	11.4	11.4	28.6	ОК
10080	min W	inter	23.550	0.000	0.0	11.0	11.0	0.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0		Total and the second	60 746	0 0	400.0	2.7
		Winter	60.746	0.0	489.2	37
		Winter	38.900	0.0	626.3	66
120	min	Winter	24.244	0.0	780.5	124
180	min	Winter	18.233	0.0	880.2	182
240	min	Winter	14.867	0.0	956.6	238
360	min	Winter	11.120	0.0	1073.5	352
480	min	Winter	9.037	0.0	1164.0	462
600	min	Winter	7.690	0.0	1237.2	566
720	min	Winter	6.737	0.0	1301.8	608
960	min	Winter	5.466	0.0	1407.9	746
1440	min	Winter	4.069	0.0	1572.4	1058
2160	min	Winter	3.029	0.0	1755.1	1516
2880	min	Winter	2.455	0.0	1896.0	1964
4320	min	Winter	1.823	0.0	2112.2	2816
5760	min	Winter	1.475	0.0	2278.5	3576
7200	min	Winter	1.251	0.0	2415.7	4176
8640	min	Winter	1.094	0.0	2534.7	4672
10080	min	Winter	0.976	0.0	2638.4	0

Waterman Moylan				
Marine House	18-014			
Clanwilliam Place	Rathmullan			
Dublin 2 Ireland	Catchment B Storage	Micro		
Date 11/06/2019	Designed by BW	Drainage		
File CATCHMENT B.SRCX	Checked by JG	Drail laye		
Micro Drainage	Source Control 2018.1.1	•		

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region Scotland and Ireland Cv (Winter) 0.840
M5-60 (mm) 16.500 Shortest Storm (mins) 15
Ratio R 0.300 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +20

Time Area Diagram

Total Area (ha) 1.916

							(mins)	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.550	4	8	1.336	8	12	0.030

Waterman Moylan		Page 4
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment B Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT B.SRCX	Checked by JG	Dialilade
Micro Drainage	Source Control 2018.1.1	<u>'</u>

Model Details

Storage is Online Cover Level (m) 26.150

Infiltration Basin Structure

Invert Level (m) 23.550 Safety Factor 1.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.60 Infiltration Coefficient Side (m/hr) 0.01740

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	660.0	0.700	660.0	1.400	660.0	2.100	660.0
0.100	660.0	0.800	660.0	1.500	660.0	2.200	660.0
0.200	660.0	0.900	660.0	1.600	660.0	2.300	0.0
0.300	660.0	1.000	660.0	1.700	660.0	2.400	0.0
0.400	660.0	1.100	660.0	1.800	660.0	2.500	0.0
0.500	660.0	1.200	660.0	1.900	660.0		
0.600	660.0	1.300	660.0	2.000	660.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0139-1270-2550-1270 Design Head (m) 2.550 Design Flow (1/s)12.7 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 139 Diameter (mm) Invert Level (m) 23.108 Minimum Outlet Pipe Diameter (mm) 225 1500 Suggested Manhole Diameter (mm)

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	2.550	12.7
	Flush-Flo™	0.605	11.5
	Kick-Flo®	1.243	9.0
Mean Flow ove	r Head Range	_	10.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	5.0	0.800	11.3	2.000	11.3	4.000	15.7
0.200	9.5	1.000	10.7	2.200	11.8	4.500	16.6
0.300	10.6	1.200	9.5	2.400	12.3	5.000	17.5
0.400	11.1	1.400	9.6	2.600	12.8	5.500	18.3
0.500	11.4	1.600	10.2	3.000	13.7	6.000	19.1
0.600	11.5	1.800	10.8	3.500	14.7	6.500	19.8

Waterman Moylan		Page 5
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment B Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT B.SRCX	Checked by JG	namaye
Micro Drainage	Source Control 2018.1.1	-

Hydro-Brake® Optimum Outflow Control

Depth (m) Flow						Flow (1/s)
7.000 7.500	20.5	8.000 8.500	21.9 22.6	9.000 9.500	23.2 23.8	

Waterman Moylan		Page 1
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment C Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT C.SRCX	Checked by JG	Dialilade
Micro Drainage	Source Control 2018.1.1	

Half Drain Time : 531 minutes.

	Storm	Max	Max	Max	Max		Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Σ	Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
15	min Summe	r 21.910	0.910	0.5	25.8		26.1	589.6	O K
30	min Summe	r 22.228	1.228	0.7	25.8		26.1	796.1	O K
60	min Summe	r 22.537	1.537	0.9	25.8		26.1	996.0	O K
120	min Summe	r 22.823	1.823	1.0	25.8		26.1	1181.4	O K
180	min Summe	r 22.959	1.959	1.1	25.8		26.1	1269.7	O K
240	min Summe	r 23.033	2.033	1.1	25.8		26.1	1317.6	O K
360	min Summe	r 23.086	2.086	1.2	25.8		26.1	1351.4	O K
480	min Summe	r 23.075	2.075	1.2	25.8		26.1	1344.7	O K
600	min Summe	r 23.051	2.051	1.2	25.8		26.1	1329.3	O K
720	min Summe	r 23.027	2.027	1.1	25.8		26.1	1313.4	O K
960	min Summe	r 22.980	1.980	1.1	25.8		26.1	1283.4	O K
1440	min Summe	r 22.884	1.884	1.1	25.8		26.1	1221.1	O K
2160	min Summe	r 22.723	1.723	1.0	25.8		26.1	1116.5	O K
2880	min Summe	r 22.545	1.545	0.9	25.8		26.1	1001.3	O K
4320	min Summe	r 22.109	1.109	0.6	25.8		26.1	718.5	O K
5760	min Summe	r 21.775	0.775	0.4	25.8		26.1	502.0	O K
7200	min Summe	r 21.533	0.533	0.3	25.8		26.1	345.5	O K
8640	min Summe	r 21.362	0.362	0.2	25.3		25.5	234.4	ОК
10080	min Summe	r 21.242	0.242	0.1	24.5		24.7	157.1	ОК
15	min Winte	r 22.025	1.025	0.6	25.8		26.1	664.5	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	89.088	0.0	621.0	23
30	min	Summer	60.746	0.0	847.6	37
60	min	Summer	38.900	0.0	1085.6	66
120	min	Summer	24.244	0.0	1354.3	126
180	min	Summer	18.233	0.0	1526.3	186
240	min	Summer	14.867	0.0	1659.3	244
360	min	Summer	11.120	0.0	1862.2	362
480	min	Summer	9.037	0.0	2018.7	450
600	min	Summer	7.690	0.0	2146.3	508
720	min	Summer	6.737	0.0	2258.1	572
960	min	Summer	5.466	0.0	2442.3	704
1440	min	Summer	4.069	0.0	2727.0	984
2160	min	Summer	3.029	0.0	3047.1	1408
2880	min	Summer	2.455	0.0	3289.3	1820
4320	min	Summer	1.823	0.0	3666.1	2556
5760	min	Summer	1.475	0.0	3955.4	3280
7200	min	Summer	1.251	0.0	4190.6	3960
8640	min	Summer	1.094	0.0	4399.2	4592
10080	min	Summer	0.976	0.0	4578.1	5336
15	min	Winter	89.088	0.0	696.6	22

Waterman Moylan		Page 2
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment C Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT C.SRCX	Checked by JG	Diamage
Micro Drainage	Source Control 2018.1.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)		Max Volume (m³)	Status
30	min W	inter	22.389	1.389	0.8	25.8	26.1	899.8	O K
60	min W	inter	22.740	1.740	1.0	25.8	26.1	1127.3	O K
120	min W	inter	23.074	2.074	1.2	25.8	26.1	1344.0	O K
180	min W	inter	23.242	2.242	1.3	25.8	26.1	1453.1	O K
240	min W	inter	23.340	2.340	1.3	25.8	26.4	1516.6	O K
360	min W	inter	23.429	2.429	1.4	25.8	26.9	1573.9	O K
480	min W	inter	23.444	2.444	1.4	25.8	27.0	1583.5	O K
600	min W	inter	23.421	2.421	1.4	25.8	26.8	1568.8	O K
720	min W	inter	23.383	2.383	1.3	25.8	26.7	1543.9	O K
960	min W	inter	23.311	2.311	1.3	25.8	26.3	1497.8	O K
1440	min W	inter	23.160	2.160	1.2	25.8	26.1	1399.7	O K
2160	min W	inter	22.901	1.901	1.1	25.8	26.1	1231.9	O K
2880	min W	inter	22.617	1.617	0.9	25.8	26.1	1047.6	O K
4320	min W	inter	21.929	0.929	0.5	25.8	26.1	601.8	O K
5760	min W	inter	21.494	0.494	0.3	25.7	26.0	320.3	O K
7200	min W	inter	21.247	0.247	0.1	24.6	24.7	160.2	O K
8640	min W:	inter	21.109	0.109	0.1	22.7	22.8	70.9	O K
10080	min W	inter	21.030	0.030	0.0	20.9	20.9	19.3	O K

	Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Winter	60.746	0.0	950.1	37
60	min	Winter	38.900	0.0	1215.4	66
120	min	Winter	24.244	0.0	1516.8	124
180	min	Winter	18.233	0.0	1710.9	182
240	min	Winter	14.867	0.0	1858.9	238
360	min	Winter	11.120	0.0	2087.7	352
480	min	Winter	9.037	0.0	2260.5	460
600	min	Winter	7.690	0.0	2405.5	564
720	min	Winter	6.737	0.0	2527.7	596
960	min	Winter	5.466	0.0	2734.8	744
1440	min	Winter	4.069	0.0	3055.0	1058
2160	min	Winter	3.029	0.0	3410.7	1516
2880	min	Winter	2.455	0.0	3683.1	1968
4320	min	Winter	1.823	0.0	4106.1	2684
5760	min	Winter	1.475	0.0	4430.1	3344
7200	min	Winter	1.251	0.0	4695.1	3968
8640	min	Winter	1.094	0.0	4925.0	4592
10080	min	Winter	0.976	0.0	5126.8	5248

Waterman Moylan		Page 3
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment C Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT C.SRCX	Checked by JG	Dialilade
Micro Drainage	Source Control 2018.1.1	•

Rainfall Details

 Return
 Rainfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 Scotland and Ireland
 Cv (Winter)
 0.840

 M5-60 (mm)
 16.500
 Shortest Storm (mins)
 15

 Ratio R
 0.300
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +20

Time Area Diagram

Total Area (ha) 3.723

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.987	4	8	2.670	8	12	0.066

Waterman Moylan		Page 4
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment C Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT C.SRCX	Checked by JG	Dialilade
Micro Drainage	Source Control 2018.1.1	

Model Details

Storage is Online Cover Level (m) 24.600

Infiltration Basin Structure

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	1080.0	0.800	1080.0	1.600	1080.0	2.400	1080.0
0.100	1080.0	0.900	1080.0	1.700	1080.0	2.500	1080.0
0.200	1080.0	1.000	1080.0	1.800	1080.0	2.600	0.0
0.300	1080.0	1.100	1080.0	1.900	1080.0	2.700	0.0
0.400	1080.0	1.200	1080.0	2.000	1080.0	2.800	0.0
0.500	1080.0	1.300	1080.0	2.100	1080.0	2.900	0.0
0.600	1080.0	1.400	1080.0	2.200	1080.0	3.000	0.0
0.700	1080.0	1.500	1080.0	2.300	1080.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0197-2580-2700-2580 Design Head (m) 2.700 Design Flow (1/s) 25.8 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Yes Sump Available Diameter (mm) 197 20.784 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1800

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	2.700	25.8
	Flush-Flo™	0.783	25.8
	Kick-Flo®	1.625	20.2
Mean Flow ove	er Head Range	_	22.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	ow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	6.8	0.600	25.4	1.600	20.7	2.600	25.3
0.200	18.5	0.800	25.8	1.800	21.2	3.000	27.1
0.300	22.2	1.000	25.5	2.000	22.3	3.500	29.2
0.400	23.9	1.200	24.7	2.200	23.4	4.000	31.1
0.500	24.9	1.400	23.3	2.400	24.4	4.500	32.9
0.400	23.9	1.200	24.7	2.200	23.4	4.000	31.1

Waterman Moylan		Page 5
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment C Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT C.SRCX	Checked by JG	pramade
Micro Drainage	Source Control 2018.1.1	<u> </u>

Hydro-Brake® Optimum Outflow Control

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
5.000 5.500 6.000	36.3	7.000	40.8	8.000 8.500 9.000	43.5 44.8 46.0		47.3

Waterman Moylan		Page 1
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment D Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT D.SRCX	Checked by JG	Diamage
Micro Drainage	Source Control 2018.1.1	

Half Drain Time : 487 minutes.

	Storm	1	Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
			\ <i>,</i>	\ /	(=/ =/	(=/ =/	(=/ =/	\ <i>,</i>	
15	min S	Summer	17.629	0.779	0.7	8.8	9.2	210.4	O K
30	min S	Summer	17.904	1.054	0.9	8.8	9.2	284.5	O K
60	min S	Summer	18.165	1.315	1.1	8.8	9.2	355.1	O K
120	min S	Summer	18.406	1.556	1.3	8.8	9.5	420.2	O K
180	min S	Summer	18.521	1.671	1.4	8.8	9.9	451.1	O K
240	min S	Summer	18.582	1.732	1.5	8.8	10.1	467.6	O K
360	min S	Summer	18.623	1.773	1.5	8.8	10.2	478.8	O K
480	min S	Summer	18.627	1.777	1.5	8.8	10.2	479.8	O K
600	min S	Summer	18.620	1.770	1.5	8.8	10.2	477.9	O K
720	min S	Summer	18.607	1.757	1.5	8.8	10.2	474.4	O K
960	min S	Summer	18.572	1.722	1.5	8.8	10.1	464.9	O K
1440	min S	Summer	18.488	1.638	1.4	8.8	9.8	442.1	O K
2160	min S	Summer	18.353	1.503	1.3	8.8	9.4	405.8	O K
2880	min S	Summer	18.215	1.365	1.2	8.8	9.2	368.5	O K
4320	min S	Summer	17.923	1.073	0.9	8.8	9.2	289.7	O K
5760	min S	Summer	17.608	0.758	0.6	8.8	9.2	204.7	O K
7200	min S	Summer	17.402	0.552	0.5	8.8	9.2	149.1	O K
8640	min S	Summer	17.257	0.407	0.3	8.7	9.1	109.8	O K
10080	min S	Summer	17.156	0.306	0.3	8.5	8.7	82.7	O K
15	min V	Winter	17.727	0.877	0.7	8.8	9.2	236.8	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	89.088	0.0	219.8	22
30	min	Summer	60.746	0.0	299.8	37
60	min	Summer	38.900	0.0	384.2	66
120	min	Summer	24.244	0.0	478.8	126
180	min	Summer	18.233	0.0	540.0	184
240	min	Summer	14.867	0.0	587.1	242
360	min	Summer	11.120	0.0	658.8	354
480	min	Summer	9.037	0.0	713.9	410
600	min	Summer	7.690	0.0	759.3	474
720	min	Summer	6.737	0.0	798.4	538
960	min	Summer	5.466	0.0	863.6	674
1440	min	Summer	4.069	0.0	964.4	956
2160	min	Summer	3.029	0.0	1076.8	1368
2880	min	Summer	2.455	0.0	1163.6	1788
4320	min	Summer	1.823	0.0	1296.4	2600
5760	min	Summer	1.475	0.0	1398.4	3280
7200	min	Summer	1.251	0.0	1482.6	3960
8640	min	Summer	1.094	0.0	1554.9	4592
10080	min	Summer	0.976	0.0	1618.7	5336
15	min	Winter	89.088	0.0	246.1	22

Waterman Moylan		Page 2
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment D Storage	Micro
Date 11/06/2019		Drainage
File CATCHMENT D.SRCX	Checked by JG	Dialilade
Micro Drainage	Source Control 2018.1.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min W	Vinter	18.037	1.187	1.0	8.8	9.2	320.5	O K
60	min W	Vinter	18.334	1.484	1.3	8.8	9.3	400.6	O K
120	min W	Vinter	18.615	1.765	1.5	8.8	10.2	476.6	O K
180	min W	Vinter	18.755	1.905	1.6	9.0	10.6	514.5	O K
240	min W	Vinter	18.835	1.985	1.7	9.2	10.9	536.1	O K
360	min W	Vinter	18.904	2.054	1.8	9.3	11.1	554.6	O K
480	min W	Vinter	18.912	2.062	1.8	9.3	11.1	556.7	O K
600	min W	Vinter	18.897	2.047	1.7	9.3	11.0	552.7	O K
720	min W	Vinter	18.882	2.032	1.7	9.3	11.0	548.6	O K
960	min W	Vinter	18.830	1.980	1.7	9.2	10.8	534.7	O K
1440	min W	Vinter	18.695	1.845	1.6	8.9	10.4	498.2	O K
2160	min W	Vinter	18.478	1.628	1.4	8.8	9.8	439.5	O K
2880	min W	Vinter	18.261	1.411	1.2	8.8	9.2	380.8	O K
4320	min W	Vinter	17.749	0.899	0.8	8.8	9.2	242.7	O K
5760	min W	Vinter	17.369	0.519	0.4	8.8	9.2	140.1	O K
7200	min W	Vinter	17.160	0.310	0.3	8.5	8.8	83.7	O K
8640	min W	Vinter	17.048	0.198	0.2	7.9	8.1	53.4	O K
10080	min W	Vinter	16.983	0.133	0.1	7.3	7.4	36.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	60.746	0.0	335.9	37
60	min	Winter	38.900	0.0	430.1	66
120	min	Winter	24.244	0.0	536.3	124
180	min	Winter	18.233	0.0	604.9	180
240	min	Winter	14.867	0.0	657.7	238
360	min	Winter	11.120	0.0	737.9	348
480	min	Winter	9.037	0.0	799.6	452
600	min	Winter	7.690	0.0	850.4	490
720	min	Winter	6.737	0.0	894.2	564
960	min	Winter	5.466	0.0	967.2	720
1440	min	Winter	4.069	0.0	1080.1	1028
2160	min	Winter	3.029	0.0	1206.1	1476
2880	min	Winter	2.455	0.0	1303.2	1928
4320	min	Winter	1.823	0.0	1452.0	2724
5760	min	Winter	1.475	0.0	1566.4	3344
7200	min	Winter	1.251	0.0	1660.8	3968
8640	min	Winter	1.094	0.0	1741.5	4584
10080	min	Winter	0.976	0.0	1812.8	5248

Waterman Moylan		Page 3
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment D Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT D.SRCX	Checked by JG	Diamage
Micro Drainage	Source Control 2018.1.1	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region Scotland and Ireland Cv (Winter) 0.840
M5-60 (mm) 16.500 Shortest Storm (mins) 15
Ratio R 0.300 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +20

Time Area Diagram

Total Area (ha) 1.317

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.447	4	8	0.843	8	12	0.027

Waterman Moylan		Page 4
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment D Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT D.SRCX	Checked by JG	Dialilade
Micro Drainage	Source Control 2018.1.1	<u>'</u>

Model Details

Storage is Online Cover Level (m) 21.750

Infiltration Basin Structure

Invert Level (m) 16.850 Safety Factor 1.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.60 Infiltration Coefficient Side (m/hr) 0.04080

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	450.0	0.700	450.0	1.400	450.0	2.100	450.0
0.100	450.0	0.800	450.0	1.500	450.0	2.200	0.0
0.200	450.0	0.900	450.0	1.600	450.0	2.300	0.0
0.300	450.0	1.000	450.0	1.700	450.0	2.400	0.0
0.400	450.0	1.100	450.0	1.800	450.0	2.500	0.0
0.500	450.0	1.200	450.0	1.900	450.0		
0.600	450.0	1.300	450.0	2.000	450.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0125-9300-2090-9300 2.090 Design Head (m) Design Flow (1/s)9.3 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 125 Diameter (mm) Invert Level (m) 16.800 Minimum Outlet Pipe Diameter (mm) 150 1200 Suggested Manhole Diameter (mm)

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	2.090	9.3
	Flush-Flo™	0.543	8.8
	Kick-Flo®	1.116	6.9
Mean Flow ove	r Head Range	_	7.8

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100 0.200	4.5	0.800 1.000	8.5 7.8	2.000	9.1 9.5	4.000 4.500	12.6 13.4
0.300	8.2 8.6	1.200	7.2	2.400	9.9	5.000	14.0
0.500	8.7 8.7	1.600	8.2 8.7	3.000 3.500	11.0 11.9	6.000 6.500	15.3 15.9

Waterman Moylan		Page 5
Marine House	18-014	
Clanwilliam Place	Rathmullan	
Dublin 2 Ireland	Catchment D Storage	Micro
Date 11/06/2019	Designed by BW	Drainage
File CATCHMENT D.SRCX	Checked by JG	Dialilade
Micro Drainage	Source Control 2018.1.1	

Hydro-Brake® Optimum Outflow Control

Depth (m) F	low (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) Flow	(1/s)
7.000 7.500		8.000 8.500		9.000 9.500	18.6 19.1			

G. Typical Stormtech MC-4500 Construction D	Details
---	---------

ACCEPTABLE FILL MATERIALS: STORMTECH MC-4500 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	OR	BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 4	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 4	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2 3}

PLEASE NOTE:

- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.

NOTES:

- 1. MC-4500 CHAMBERS SHALL CONFORM TO THE REQUIREMENTS OF ASTM F2418 "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. MC-4500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. "ACCEPTABLE FILL MATERIALS" TABLE ABOVE PROVIDES MATERIAL LOCATIONS, DESCRIPTIONS, GRADATIONS, AND COMPACTION REQUIREMENTS FOR FOUNDATION, EMBEDMENT, AND FILL MATERIALS.
- 4. THE "SITE DESIGN ENGINEER" REFERS TO THE ENGINEER RESPONSIBLE FOR THE DESIGN AND LAYOUT OF THE STORMTECH CHAMBERS FOR THIS PROJECT.
- 5. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 6. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 7. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

18-014	Rathmullen_SWA	DATE: 11/14/2018 DRAWN: BW		PROJECT #: Tool CHECKED:	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMAT
DESCRIPTION					ENTATIVE. THE SITE DESIGN ENGINEER
REV DRW CHK					JECT REPRES
/ DR		\parallel			THER PRO.
Stormlech*			70 INWOOD ROAD, SUITE 3 ROCKY HILL CT 06067	860-529-8188 888-892-2694 WWW.STORMTECH.COM	VIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN I
					THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGIN
(3 () OF	Т	(6

H. Louth County Council Consent Letter: proposed junction upgrades	

Mr Joe Gibbons Waterman Moylan Block*S, East Point Business Park Alfie Byrne Road Dublin D03 H3F4 WATERMAN MOYLAN
FILE REF: 18-014
RECEIVED
28 JUN 2019
Action 1.
Info POC JG
Initial IN

26th June 2019

Re: Residential Development at Rathmullan, Drogheda Co Louth

SHD Planning Application Ref : ABP-303439-19

Dear Sirs,

I refer to the above matter and wish to advise that Louth County Council consents to the making of a planning application in relation to lands which is in its ownership at Rathmullan, Drogheda and for the proposed layout of the junction upgrades at Rathmullan Road/R132 junction and also the Rathmullan Road/Marleys Lane junction Drogheda, Co Louth, are generally acceptable, in order to mitigate the effect of additional traffic on these junctions, with regard to a pre-application submission to be made to An Bord Pleanala under the Strategic Housing Development (SHD) provisions of the Planning and Development Act. See attached drawings:-

Drawing No's 18-014/S100 prepared by Waterman Moylan Consulting Engineers

Drawing No's 18-014/S101 prepared by Waterman Moylan Consulting Engineers

Please be advised that nothing contained herein shall constitute or be construed as a contract or memorandum of same to the satisfaction of the Statute of Frauds (Ireland) Act, 1965. No binding agreement shall come into existence until such time as contracts in duplicate are agreed, executed, exchanged, returned and full contract deposit paid and accepted.

Alan Sherry

Yours Astricerely

Senior Executive Officer

UK and Ireland Office Locations

